NEW PARADIGM

개정 노트 midas eGen 2017 Ver.310 R1 (2016년 10월 20일)

개정 노트

midas eGen 2017 Ver.310 R1 (2016년 10월 20일)

- 1. KBC2016 탑재
- 2. 해석 및 설계 기능 분리 추가
- 3. 볼트 접합부 설계법 변경 기능 추가
- 4. 매트기초 설계 근거 계산서 추가
- 5. 매트기초 기본근 및 휨 보강 상세 설계 지원
- 한 부재(매트 및 슬래브)의 부재력 확인 기능
 추가
- 7. Envelope 하중조합 결과 추가
- 8. 전처리 그룹핑 작업 기능 개선
- 9. 철골계단생성 기능 MODS 기능에서 제외

- 10. 트레이싱 이동 기능 추가
- 11. 분할기능 추가
- 12. 축척기능 추가
- 13. SOG 설계를 위한 지내력 설정 기능 추가

그 외 성능 개선 및 버그 수정

건축구조기준 2016(이하 KBC2016)이 2016년 5월 31일 전부 개정고시 되었습니다.

6월 1일 국토교통부의 "건축구조 운영지침 시달 알림"에 따라 2016년 11월 31일 까지 기존 기준(KBC2009)와 신 기준 (KBC2016)을 모두 사용 할 수 있는 병행 기간이 되었습니다.

- midas eGen DS V310부터는 기본 설정이 KBC2016으로 적용됩니다.
- 선택적으로 기존 KBC2009를 적용하고자 한다면, [해석] [해석설계 설정] [해석설계 기본설정]에서 구조기준을 KBC2009로 변경하시면 됩니다.

🍰 midas eGen DS 🛛 🗅 🗁 🗒	🚔 🖻 🔻					
정보 모델링	해석	결과	도구	<u> </u>	윈도우	도움 🥏
해석설계 기본설정			׿		회 (國강성조정계수 드 幢 모멘트 재분배	 □[к유효길 계수 (1) 한계세장
제어정보 설계정보 재질 및 단면정	보 상부구조 철근정보	· 하부구조 철근정보	·····································	해석설계 설계하는 기본설정	중소합 철근 노출 환경	
건축구조기준 : [KBC 2016		· _			애역열계	128 -
* Mesh Size 슬래브 : 500 mm	경사 슬래브/계단 :	500 mm		서개기조선	11 J H H	
일반벽: 1000 mm	매트기초	500 mm		· 설계기준-	N 2 28	×
☑ 철근콘크리트 보, 기둥 설계부	재력조정			_ 철골 설계기준 KSSC-L	철근콘크리트 : 설계기준: SD16 ▼ KCI-USD12	철골철근콘크리트 설계기준: ▼ KSSC-SBC16 ▼
 □ 모든 부재의 사유도 연결 ☑ 짧은 벽체의 강성 저감 : 벽길 	전이보유 이 1000 mm	영 · (@) 모유형 ((()) 판유'	8		철근 규격	철근 규격
두께/재질/편심이 다른 연속된 도면표기를 위한 층 구간: 층레벨	벽을 일체로 해석/설) (FL) + 1500	# ! mm		>	KS01(RC)	▼ (KS01(RC) ▼
총별 슬래브 형식 지정	벽 개구부에	대한 처리 🛛		~ 재질 철골 규격	콘크리트 규격	
* 교유치 해석	🔲 Ρ-Delta ö	역		KS16(5	S) KS01(RC)	•
설계	a franke	و معنی است				확인 취소

1. KBC2016 탑재 (지역 입력)

- 1) 개정된 KBC2016에 따라 세종시 등 지역지구가 변경된 행정구역이 반영되었습니다.
 - ① [정보] [프로젝트 정보] [건물정보]에서 확인 가능합니다.
 - I. 충남 공주 및 충북 연기 등 일부 지역 "세종특별자치시"로 추가
 - Ⅱ. 충북 청원군 청주시로 통합으로 "청주시 청원구" 추가

건물정보 ×	건물정보 ×
설계개요	설계개요
프로젝트 명 :	프로젝트 명 :
대지 위치 : 세종특별자치시 🗸	대지 위치 : 충청북도 🗸 청주시 청원구 🗸
나머지 주소 : 철거로 경상남도	나머지 주소 : 물음국
건물 용도 : 경장북도 소매점 ▼	건물 용도 : 제1종근린생활시설 ▼ 홍첨국
연면적: 대전 광역시 m² m²	연면적: 1000
지상 연면적 : <u>세종특별자치시</u> m²	지상 연면적 : 1000 청중신 상당국
구조계획: 입청 광역시 전라남도 RC:철근콘크리트구조 ▼	구조계획: 철근콘크리트 보통 ▼ 정수사 정원구
주변 환경 : 젳줓돈	주변 환경 : 지표면조도 C 중추시 ▼
지반 종류 : 충청북도 ▼	지반 종류 : S_D : 단단한 토사지반 ▼
지내력: 200 kN/m ²	지내력: 200 kN/m ²
평균 지표면 : 1층 바닥으로부터 -200 mm	평균 지표면 : 1층 바닥으로부터 -200 mm
지하 수위 : 평균 지표면으로부터 -2000 mm	지하 수위 : 평균 지표면으로부터 -2000 mm
지반조사 실시 : 💿 유 💿 무	지반조사 실시 : 💿 유 💿 무
* '무' 로 체크한 경우 내진안전확인서 및 구조계산서의 지하수위가	* '무' 로 체크한 경우 내진안전확인서 및 구조계산서의 지하수위가
'해당없음' 으로 표기 됩니다.	'해당없음' 으로 표기 됩니다.
확인 취소	확인 취소

1. KBC2016 탑재 (풍하중)

2)

KBC2016에서는 풍하중 해석 시 다음 내용에 따라 풍직각방향에 대한 하중을 고려하도록 변경되었습니다.

기본하중설정	×
일반사항 풍하중 지진하중 활하중조정 지하하중 3	적설하중
- 입력방법 ◎ 하줒기주	풍하중요소
이용기간 이 4급급 4 기준 정보 하중 기준 : KBC2016	Angle → × 0 ≤ Angle <90
 ⑦ 간편법 ◎ 일반법 지표면조도 : C → 	Angle, Angle+90 방향에 대한 2개의 하중케이스가 생성됩니다.
기본 풍속 : 26 m/sec 중요도 계수 : 0.95	하중 방향 [deg] 추가하중 총별하중계 수
* 가스트 계수 *◎ 강체 구조물 [*] ◎ 유연 구조물	a a+90 0.00 90.00
▼ 자동 계산 GDx: 0 GDy: 0	T T T T T T
□ 지형 효과 고려 Kzt: 1 □ 주저축 거물의 푸진간바햔 하주고러	중이당 개보
	확인 취소

용정보트리	
정보트리	₽ ×
· 후 : 구조재료	A
A CONTRACTOR OF A CONTRACTOR	
풍하중 [-WL_0]	
!또 풍하중 [-\L_90]	
… 등직각풍하중 [WL_0(A)]	
…뉴트 풍직각풍하중 [WL_90(A)]	

midas eGen 2017 Ver.310 R1

1. KBC2016 탑재 (풍하중)

- 3) KBC2016에서는 풍하중 적용 시 조건에 따라 "간편법"에 따라 입력 가능하도록 변경되었습니다.
 - ① [해석] [하중 설정] [기본하중 설정]에서 변경 및 입력 가능합니다.

1. KBC2016 탑재 (지진하중)

4) KBC2016에서는 지진하중 계산 시 사용되는 지반증폭계수(F_a, F_v)의 결정 시 S_C, S_D 등급의 지반의 경우 보통암의 깊이에 따라 다른 값이 적용 되도록 변경되었습니다.

① [해석] - [하중 설정] - [기본하중 설정]에서 변경 및 입력 가능합니다.

	〈표 0306.3.3〉 단주기 지반증폭계 <i>수, P_e</i>				
			지진지역		
기본하중설정	시반공류	시만공류		s = 0.50	g_ = 0.75
				0.8	0.8
일만사항 풍하중 시신하중 활하중소성 시하하중 적절하중				1.0	1.0
		보통암까지의 깊이 20m 이상	1.2	1.2	1.1
이려 바비		보통암까지의 깊이 20m 미만	1.4	1.4	1.3
이 하주기주 이 지저인령 불러오기 미디	8.	보통암까지의 깊이 20m 이상	1.6	1.4	1.2
		보통암까지의 깊이 20m 미만	1.7	1.5	1.3
설계 스펙트럼 정보 지진		S _g	2.5	1.9	1.3
하중 기준 : KBC2016 하	* <i>s</i> ,는 설계스럽	펙트럼 가속도 산정식(0306.3.1)에	적용된 <i>3</i> 를 2.5배	한 값이다. 위 표에	서 <i>s</i> ,의 중간값에
총석계 스펙트럭 가속도	대하여는 직 (선보간한다.			
x x → 9 : 1 → Fa : 1.46	〈荘 0306.3.4)	<표 0306.3.4> 1초주기 지반증폭계수, 📕			
			지진지역		
지친구역 계수: 0,22 ▼ FV: 1,30	시만공류		<i>B</i> ≤ 0,1	s = 0.2	s = 0.3
지반 종류 : S_D ▼ S_DS : 0,53533313: g		Sa		0.8	0.8
보통암 깊이 : 0 m <u>응_D1 : 0.2317331</u> 3; g	5.		1.0	1.0	1.0
		보통암까지의 깊이 20m 이상	1.7	1.6	1.5
*내진 등급: 🗏 중요도계수: 1	50	보통암까지의 깊이 20m 미만	1.5	1.4	1.3
*비지 선계 번즈·오 마오 마 오 마 이 이 -> 마		보통암까지의 깊이 20m 이상	2.4	2.0	1.8
	- D	보통암까지의 깊이 20m 미만	1.7	1.6	1.5
a방향 설계 스펙트럼] [a+90방향 설계 스펙트럼] [0		S _g	3.5	3.2	2.8
	* <i>s</i> 는 설계스픽	텍트럼 가속도 산정식(0306.3.2)	에 적용된 값이다	· 위 표에서 <i>s</i> 의	중간값에 대하여는
	직선보간한다	ŀ.			
		호민	 利人		

신규기능

5) KBC2016에서는 활하중의 크기가 기존 KBC2009대비 변경된 부분이 많습니다.

<표 0303.2.1> 기본등분포활하중 (단위 : kN/m³)

용도	KBC2009		KBC2016	
대분류	소분류	활하중	소분류	활하중
주택	주거용 구조물의 거실, <mark>공용실</mark> , 복도	2.0	주거용 건축물의 거실	2.0
	공동주택의 발코니	3.0	공동주택의 공용실	5.0
	병실과 해당 복도	2.0	병실	2.0
병원	수술실, 공용실과 해당 복도	3.0	수술실, 공용실, 실험실	3.0
			1층 외의 모든 층 복도	4.0
스바지전	객실과 해당 복도	2.0	객실	2.0
국국사업	공용실과 해당 복도	5.0	공용실	5.0
	일반 사무실과 해당 복도	2.5	일반 사무실	2.5
	특수용도사무실과 해당 복도	5.0	특수용도사무실	5.0
사무실	문서보관실	5.0	문서보관실	5.0
	로비	4.0		
			1층 외의 모든 층 복도	4.0
	교실과 해당 복도	3.0	교실	3.0
학교	일반 실험실	3.0	일반실험실	3.0
	중량물 실험실	5.0	중량물 실험실	5.0
	로비	4.0		
			1층 외의 모든 층 복도	4.0
	상점, 백화점 (1층 부분)	5.0	상점, 백화점 (1층)	5.0
판매장	상점, 백화점 (2층 이상 부분)	4.0	상점, 백화점 (2층 이상)	4.0
	창고형 매장	6.0	창고형 매장	6.0
	로비, 복도	5.0	모든 층 복도	5.0
	무대	7.0	무대	7.0
지히미ㅇㅎ	식당	5.0	식당	5.0
비외 옷 ㅠㅎ 자	주방 (영업용)	7.0	주방	7.0
3	극장 및 집회장 (고정식)	4.0	극장 및 집회장 (고정 좌석)	4.0
	집회장 (이동식)	5.0	집회장 (이동 좌석)	5.0
	연회장, 무도장	5.0	연회장, 무도장	5.0
	체육관 바닥, 옥외경기장	5.0	체육관 바닥, 옥외경기장	5.0
체육시설	스탠드 (고정식)	4.0	스탠드 (고정 좌석)	4.0
	스탠드 (이동식)	5.0	스탠드 (이동 좌석)	5.0

- 공동주택의 공용실 활하중 조정

- 병원, 사무실, 학교, 도서관의 복도 활하중 강화

기본 등분포 활하중이 변경 됨에 따라 모델링 시 기본 용도와 다른 영역의 활하중은 [마감지정] 기능을 활용하여 입력이 필요함.

5) KBC2016에서는 활하중의 크기가 기존 KBC2009대비 변경된 부분이 많습니다.

· ΞΞ 05	05.2.12	기존승군포철약중 (한귀·NN/III)			
용도		KBC2009		KBC2016	
대분류		소분류	활하중	소분류	활하중
도서관		열람실 및 해당 복도	3.0	열람실	3.0
		서고	7.5	서고	7.5
				1층 외의 모든 층 복도	4.0
		승용차전용	3.0	총중량 40kN이하의 차량 (옥내)	2.5
	옥내주	경량트럭 및 빈 버스 용도	8.0	총중량 40kN이하의 차량 (옥외)	5.0
	차구역	총중량 18톤 이하의 트럭, 중량 차량 용도	12.0	총중량 40kN초과 90kN이하의 차량	6.0
옥내차	옥내차	승용차전용	3.0	총중량 90kN초과 180kN이하의 차량	12.0
주차장	거나카	경량트럭 및 빈 버스 용도	10.0	옥외 차도와 차도 양측의 보도	12.0
	영작적 로	총중량 18톤 이하의 트럭, 중량 차량 용도	16.0		
	9.01	승용차, 경량트럭 및 빈 버스 용 도	12.0		
	ㅋ피	총중량 18톤 이하의 트럭,중량 차량 용도	16.0		
		점유/ 사용하지 않는 지붕(지붕 활하중)	1.0	점유/ 사용하지 않는 지붕(지붕 활하중)	1.0
		산책로 용도	3.0	산책로 용도	3.0
^	8	정원 및 집회 용도	5.0	정원 및 집회 용도	5.0
		헬리콥터 이착륙장	5.0	헬리콥터 이착륙장	5.0
				출입이 제한된 조경 구역	1.0
발코니				출입 바닥 활하중의 1.5배 (최대	
				5.0 kN/m²)	
리비미보다				로비, 1층 복도	5.0
				1층 외의 모든 층 복도 (병원, 사	출입 바
	ᅕᆿᆂ			무실, 학교, 집회및 유흥장, 도서	닥 활하
				관은 별도 규정)	중
21	Cł.			단독주택 또는 2세대 거주 주택	2.0
위난				기타의 계단	5.0

<표 0303.2.1> 기본등분포활하중 (단위 : kN/m²)

- 주차장 및 옥외차도 활하중을 차량 종별이 아닌 총 중량 별로 규정함
- 출입이 제한된 지붕 조경구역 활하중 추가
- 발코니 활하중 일괄 규정
- 로비 및 복도 활하중 일괄규정
- 모든 용도의 로비 및 1층 복도 활하중 강화
- 병원, 사무실, 학교, 도서관의 1복도 활하중 강화

- 계단 활하중 추가하여 정리

기본 등분포 활하중이 변경 됨에 따라 모델링 시 기본 용도와 다른 영역의 활하중은 [마감지정] 기능을 활용하여 입력이 필요함. 6) KBC2016에서는 적설하중 입력시 기본지상적설하중을 표를 기준으로 입력하는 것이 아닌 지도의 등고선을 확인하여 입력하도록 변경되었습니다. 프로그램에는 지도상의 지역의 기본지상적설하중의 크기가 명확한 위치는 자동입력되지만 그렇지 않은 경우(예: 강원도 지역) 지도를 확인하여 입력해야 합니다.

KBC2009 KBC2016 0304.2.2 기본지상적설하중 0304.2.2 기본지상적설하중 구조물에 대한 지역별 100년 재현주기 지상적설하중 구조물에 대한 지역별 100년 재현주기 기본지상적설 하중 Sg은 [그림 0304.2.1]에 따른다 의 기본값S_a은 <표 0304.2. 2>에 의한다. <표 0304.2.2> 기본지상적설하중 S, 지상적설하중(kN/m⁹) 지 ᅄ τēβ., 서울, 수원, 춘천, 서산, 청주, 대저, 추풍령, 포 항, 군산, 대구, 전주, 울산, 광주, 부산, 통영, 목 0.5 포, 여수, 제주, 서귀포, 진주, 이천 경읍, 울진 0.65 천 શ 0.8 소 Ż 2.0릉 갔 3.0 울릉도, 대관령 7.0

midas eGen 2017 Ver.310 R1

1. KBC2016 탑재 (적설하중)

6) KBC2016에서는 적설하중 입력시 기본지상적설하중을 표를 기준으로 입력하는 것이 아닌 지도의 등고선을 확인하여 입력하도록 변경되었습니다. 프로그램에는 지도상의 지역의 기본지상적설하중의 크기가 명확한 위치는 자동입력되지만 그렇지 않은 경우(예: 강원도 지역) 지도를 확인하여 입력해야 합니다.

기본하중설정	×
일반사항 풍하중 지진하중 활하중조정 지하하중 적설하중	
чатана и и и и и и и и и и и и и и и и и и	
적인 취소	

신규기능

1. KBC2016 탑재 (적설하중)

- 신규기능
- 7) KBC2016에서는 적설하중의 눈과 비의 혼합하중(기존 "추가적설하중")의 위치가 변경되었으며, 고지대 또는 산간지 역에 대한 적설하중 고려 기능이 추가되었습니다.

	기본하중설정
0304.7 눈과 비의 혼합하중 0304.7.1 비로 인한 추가하중 지상적설하중이 1.0kN/m2이하인 지역에서는 지붕의 경사각이 (W/15)°(W는 처마에서 용마루까지의 수평거리, m)이하인 모든 지붕 에 눈 위의 비로 인한 하중 0.25kN/m2을 추가하여야 한다. 이 추가하 중은 평지붕적설하중 또는 경사지붕적설하중에 적용하여야 하며 최소 적설하중, 부분재하, 국부적설하중에는 적용할 필요가 없다.	일반사항 풍하중 지진하중 활하중조정 지하하중 적설하중 적설하중 정보 난방상태 : 난방 구조물 ▼ 대지위치 : 서울 특별시 강남구 기본 지상 적설하중 0.5 kN/m² 주변환경 : C : 바람에 의한 적설하중 ▼ 지붕표면 : [미끄러지기 쉽지 않은 표! ▼
0304.2.1 지상적설하중의 적용조건 (1)지붕적설하중을 산정하기 위한 지상적설하중은 [그림 0304.2.1]의 기본지상적설하중에 따른다. 이때 [그림 0304.2.1]을 사용할 경우, 지 역적 기후와 지형에 따라 국부적인 변화를 초래할 수 있다는 점을 고 려해야 한다. [그림 0304.2.1] 상의 지상적설하중이 3.0kN/m2 이하인 지역의 고지대나 산간지방 같은 특정한 지형조건에서는 [그림 0304.2.1]의 값을 1.5배하여 기본지상적설하중으로 한다.	중요도계수: 1 · · · · · · · · · · · · · · · · · · ·

1. KBC2016 탑재 (철근 재질 추가)

- 8) KBC2016의 철근콘크리트 기준에 신규 재질이 추가되었습니다.
 - RC구조에서는 기존 철근의 강도 SD500까지 지원되었으나 KBC1026에서는 철근 강도 SD600이 지원됩니다.

midas eGen 2017 Ver.310 R1

1. KBC2016 탑재 (철골 재질 추가)

- 9) KBC2016의 강구조 기준에 신규 재질이 추가되었습니다.
 - Steel구조에서는 SHN400 및 SHN490 강종과 앵커볼트의 신규 재질이 추가로 지원됩니다.
 - SHN강종의 경우 [모델링] [특성] [재료등록] [구조재료]에서 철골 재료 등록이 가능합니다.
 - 앵커볼트의 신규 강종은 [해석설계 기본설정]에서 변경적용이 가능합니다.

제료	×
일반사항 ID 1 명칭	철근콘크리트 규격
	● ● 규격 KS16(S) 등급 ▼
=田 상세정보	확인 적용 취소
	SS400 SM400 SN400 SMA400
	SHN400 SS490 SM490 SMA490 SMA490
	SM490 SHN490 SM520 SS540 SM570

해석설계 기본설정 	\times
제어정보 설계정보 재질 및 단면정보 상부구조 철근정보 하부구조 철근정보 철근갖도	
rue	
철골접합부 재질강도 주각부 볼트 접합부	
*베이스 플레이트 : SS400 ▼ 플레이트 : SS400 ▼ 고력볼트	
· · · · · · · · · · · · · · · · · · ·	
SS400 SM400 SM490 SM90 SM490 KS-B-1016-4,6 KS-B-1016-6,8 KS-B-1016-6,8 KS-B-1016-8,8 KS-B-1016-8,8	
철골 H형강 설계단면 설정	
현재 설정값을 초기값으로 설정 취소	

2. 해석 및 설계 기능 분리 추가

기능개선

[해석] - [해석설계 설정] 의 [모멘트 재분배 계수], [유효 길이계수(K)], [한계 세장비] 수정 시 재설계가 필요하며, 이 경 우 해석/설계를 다시 하는 것이 아닌 설계만 다시 할 수 있도록 해석 및 설계 기능 분리 추가되었습니다.

3. 볼트 접합부 설계법 변경 기능 추가

- 기둥 및 보의 이음 접합부 설계 방식을 마찰형 또는 지압형을 선택할 수 있는 기능이 추가되었습니다.
- [해석] [해석설계 기본설정] 에서 확인 및 변경 가능합니다.

midas **eGen** 2017 Ver.310 R1

매트 기본 배근 정보

매트 휨보강 배근 정보

매트 전단 설계 정보

매트 공칭 강도 테이블

[결과] - [구조설계 결과] - [통합구조 계산서] 출력 시 매트기초의 설계 근거자료 추가

4. 매트기초 설계 근거 계산서 추가

기능개선

- "말뚝"을 체크하면 말뚝(파일)위치의 결과가 표시됩니다.

2면전단 선택 시 기초의 2면전단(뚫림전단, 펀칭전단) 결과가 표시되며, 각 전단 설계 영역에 해당하는 설계결과(강도비)가 표시됩니다. - "기둥"을 체크하면 기둥위치의 결과가 표시됩니다.

○ 2면전단 ✔ 기둥 말뚝

휨보강 선택 시 기초의 휨보강 영역이 표시되며, 각 보강영역에 해당하는 설계결과(강도비)가 표시됩니다. - "상부"를 체크하면 상부 보강영역이 표시됩니다. - "하부"를 체크하면 하부 보강영역이 표시됩니다.

○ 휨보강 상부 ✔ 하부

② 워크트리 하부의 "뷰"탭 상에 휩보강 또는 전단보강을 확인 할 수 있는 선택 버튼으로 확인 가능합니다.

5. 매트기초 기본근 및 휨 보강 상세 설계 지원

- 1)
 - ① 2D기본 기초 평면도활성화 후
- 보강영역 상세설계 기능 지원

5. 매트기초 기본근 및 휨 보강 상세 설계 지원

2) 휨보강 상세설계 기능

① 2D기본 기초 평면도에서 보강영역을 더블 클릭 후 배근 정보 편집 가능

6. 판 부재(매트 및 슬래브)의 부재력 확인 기능 추가

[결과] - [부재별 결과] - [슬래브 매트기초] 기능으로 판 부재의 부재력을 확인 할 수 있습니다. - 자세한 기능 설명은 온라인 매뉴얼을 참고해주세요(키보드 'F1')

기능개선

[결과] - [부재별 결과] - [프레임], [벽], [슬래브 매트기초] 기능으로 각 부재력을 확인할 때 Envelope하중 조합으로 확 인 할 수 있습니다.

- Envelope 하중 조합이란?

부재 설계를 위해 적용되는 여러 가지의 하중 조합들의 값들 중 최대 또는 최소 값에 해당하는 하중을 확인할 수 있도 록 지원되는 하중조합입니다.

8. 전처리 그룹핑 작업 개선

부재 그룹핑 작업 시 동일 그룹 내에서 층별로 분리 적용할 수 있도록 그룹핑 기능이 개선되었습니다.

- 기존 버전(V301 이하)에서는 슬래브의 전처리 그룹핑이
 지원되지 않았으며, 벽체의 경우 전처리 그룹핑 시 해석/설계 이후
 원하지 않는 상태의 그룹핑이 되는 경우가 있었습니다.
 이러한 증상이 일부 개선되었습니다.
- 최신 버전에서는 전처리상태의 그룹핑을 모든 부재에 대하여
 지원하게 되었으며,
- 한 개의 부재 그룹 내에서 층별로 세부 그룹핑이 가능하도록
 개선되었습니다.

상위 그룹 이름을 마우스 우 측버튼으로 클릭하면, 팝업 메뉴에서 "하부 그룹 생성"기능으로 동일 그룹내 에서의 층별 세부 그룹을 생 성할 수 있습니다.

MODS 모듈 기능으로 되어 있던 [철골계단] 관련 기능은 MODS 모듈에서 제외하여 최신버전 부터는 언제든 사용 가능합 니다.

- 기존 버전(V301 이하)에서는 [철골계단보], [철골경사로]기능이 MODS모듈이었으나 최신버전(V310)부터는 일반 기 능으로 조정되었습니다.

10. 트레이싱 이동 기능 추가

- 기능개선
- 기존 버전(V301 이하)에서는 등록된 도면의 높이 조정 시 [층별정보]에서 설정해야 했지만 최신버전에서는 [모델링] [이동] [트레이싱 이동]기능으로 선택한 도면의 수직 높이를 이동할 수 있습니다.

메시지	4 ×
명령 : TM (트레이싱이동) 대상 CAD도면 선택[현재 설정층] :	A • •
거리 입력(dz) [최하부(B)/ 최상부(T)] :	
- 이동 위치는 입력된 임의의 위치 또는 최하부 등	및 최상부로 설정 가
능합니다.	

11. 분할 기능 추가

- 최신버전에서는 [모델링] - [분할]기능으로 이미 생성된 부재를 분할할 수 있도록 되었습니다.

머지지	n ×
	Ť ^
명령 : DIV (분할) 대상 부재 선택 :	ļ
기준 부재 지정 [균등 분할(E)]	

- 기준 부재 지정은 대상 부재와 교차되어 있는 부재를 기준으로 대상부재를 분할 할 수 있습니다.
- 균등 분할은 설정한 개수로 등간격 분할이 가능합니다.

- 이동하고자하는 축척비율을 X,Y좌표계 형태로 입력합니다.

축적 비율 입력 (SX,SY) :

메시지	म ×
대상 절점 선택 :	
기준점 지정:	
기준점(7300,-8000,3200)	

- 위치 이동하고자하는 기준점 지정을 선택합니다.

메시지	Ŧ ×
명령 : SC (축척)	A
대상 절점 선택 :	
기준점 지정:	•

- 최신버전에서는 [모델링] - [축척]기능으로 원하는 절점 선택 후 설정된 비율 만큼 위치 이동이 가능해졌습니다.

13. SOG슬래브 설계를 위한 지내력 설정 기능 추가

- 기능개선
- 최신버전에서는 [해석] [해석설계 설정] [해석설계 기본설정] [설계정보 탭]에 SOG지내력을 입력하는 기능이 추 가되었습니다.

해석설계 기본설정 🛛 💦 👋	
제어정보 설계정보 재질 및 단면정보 상부구조 철근정보 하부구조 철근정보	
프레임의 황구속조건 X축 <u>황구속</u> Y축 황구속 ↓ 최대 허용 처작	
내진설계에 포함되지 않는 부재 ▼ 작은보 ▼ GL아래 보/기둥 ▼ 내림기초층의 부재	
설계용 길이 ▼ 유효좌굴길이 자동계산 ■ 모든 Steel 작은보/큰보 횡지지됨	
■특별 지진하중조합으로 설계된 부재에 강전단-약휨설계 적용 RC 보부재의 모멘트재분배계수: 1	
월근한력 점도, 월근 도울 환경 ◎ 전조환경 ○ 그 되 환경 *중도리, 띠장의 1 스팬 설계기준 6 m 합성보, 철괄접합부 설계조건 : 설정하기	- 기본설정 값은 50 kN/㎡으로 설정
S.O.G 설계를 위한 지내력: 50 kN/m² 철골계단 설계조건: 설정하기	어 있습니다. - 여기에서 설정된 값이 계산서에 표
현재 설정값을 초기값으로 설정 취소 취소	됩니다.