midas Gen Tutorial

Intergrated Solution System for Building and General Structures

KBC2009를 RC건축물 구조해석 및 설계

midas Gen 2015 V1.1 MIDAS IT

Table of Contents

1. 개요		4
	1-1 모델 개요	5
	1-2 구조 개요	6
	1-3 구조 평면 및 단면	7
	1-4 적용기준1	0
	1-5 사용재료1	0
	1-6 특기사항	0

2. 구조 모델링13

2-1 단위계 설정14
2-2 UCS 설정14
2-3 선그리드 설정15
2-4 부재재질과 단면데이터 입력16
2-5 2층 바닥요소 입력21
2-6 1층 기둥요소 생성25
2-7 생성된 기둥요소 단면 변경
2-8 벽요소 생성
2-9 Beam End Release 조건 입력31
2-10 하중조건 설정
2-11 Beam Load 입력
2-12 Building Generation
2-13 불연속벽체 생성
2-14 보 단면요소 변경
2-15 지붕 단면요소 변경40
2-16 기둥 단면요소 변경41
2-17 층 데이터 입력42
2-18 부재 재질 변경43
2-19 경계조건 입력44

3. 하중입력45

3-1 자중 입력46
3-2 바닥하중 종류 입력47
3-3 바닥하중 입력48
3-4 풍하중 입력52
3-5 Building Control Data56
3-6 내진설계범주 판정 및 1차 해석법 결정57
3-7 응답스펙트럼 해석조건 결정59

4. 구조해석 수행63

6-1 설계변수	101
6-2 보부재 설계	106
6-3 보 부재 강도검증	112
6-4 기둥부재 설계	114
6-5 전단벽 부재 설계	119
6-6 전단벽부재 설계결과 확인	123
6-7 Wall Mark별 설계결과 출력	127
6-8 Wall ID별 설계결과 출력	129
6-9 전단벽부재 강도검증	130

KBC2009를 적용한 철근콘크리트 골조와 전단벽을 가진 이중골조 시스템

midas Gen 2015

1-1 모델 개요

Application 예제는 실무에서 일반적으로 적용되는 구조해석 및 설계 절차를 실례를 통하여 설명하는 midas Gen의 실무적용 지침서입니다.

구조해석에 익숙하지 않거나 midas Gen을 처음 접하는 사용자는 이 Application 예제를 통해 midas Gen의 다양하고 강력한 기능들을 효과적으로 활용하여, 정확하고 효율적인 구조해석과 경제적이고 안전한 구조설계를 수행하는 방법을 습득할 수 있기 바랍니다.

Application 예제를 통해 midas Gen의 실무적용법을 익히기 전에, Getting Started와 Analysis & Design Manual에서 구조해석과 설계의 기본이론을 습득하고, 따라하기 예제를 통해 midas Gen의 기본 기능을 익히는 것이 바람직합니다.

본 예제에서 midas Gen을 이용하여 철근콘크리트조 건물을 해석하고 설계하는 절차는 다음과 같습니다.

- 1. 작업 기본환경 설정
- 2. 부재재질과 단면데이터의 입력
- 3. 절점과 요소의 입력
- 4. 경계조건의 입력
- 5. 하중의 입력
- 6. 구조해석의 수행
- 7. 해석결과의 검토, 비정형 평가 및 사용성 평가
- 8. 철근콘크리트부재 설계

1-2 구조 개요

그림 1.1 Reinforced Concrete Building

건물위치	서울시
구조형식	Dual Systems with Reinforced Concrete Frames and Shear Wall
건물용도	업무시설, 판매시설
건물규모	지상 12층
구조시스템	지진하중의 25% 이상을 부담하는 철큰콘크리트 골조와 전단벽 으로 이루어진 이중골조시스템

1-3 구조 평면 및 단면

부재명	단면번호	단면치수
G1	211	400 X 700
G2	212	400 X 700
G3	213	600 X 800
G4	214	500 X 800
G3A	215	600 X 800
WG1	221	400 X 700
WG2	222	600 X 800
WG3	223	600 X 800

그림 1.2 2~3F 구조평면도 (단위:mm)

부재명	단면번호	단면치수
G1	411	400 X 700
G2	412	400 X 700
G3	413	600 X 800
G4	414	500 X 800
WG1	421	400 X 700
WG2	422	600 X 800
WG3	423	600 X 800

그림1.3 (4F~Roof)

MIDAS

층	단면번호	C2	단면번호	C3	단면번호	C4
$10 \sim 12$	206	600 x 600	306	600 x 700	406	600 x 700
8~9	205	600 x 800	305	600 x 800	405	600 x 800
6 ~ 7	204	600 x 800	304	600 x 800	404	600 x 800
4 ~ 5	203	800 x 800	303	800 x 800	403	800 x 800
2 ~ 3	202	900 x 1000	302	800 x 800	402	900 x 900
1	201	1000 x 1000	301	1000 x 1000	401	900 x 900

그림1.4 단면도

1-4 적용기준

- 건축구조설계기준 (KBC 2009) / 건설교통부
- 콘크리트 구조설계기준 (KCI-USD12, 토목/건축 통합기준) / 한국콘크리트학회

1-5 사용재료

- 콘크리트: $f_{ck} = 24N / mm^2$
- 철 -: KSD 3504 SD40 $f_y = 400 N / mm^2$

1-6 특기사항

- 건물의 바닥 슬래브는 하중으로 고려하고 구조모델에서는 제외합니다. 슬래브의 강막효과(Rigid Diaphragm Effect)는 Story기능을 이용하여 기구학적 구속조건으로 고려합니다.
- 바닥판을 지지하는 작은보는 중력방향의 하중만을 전달하고, 구조물의 횡적거동 에는 영향을 미치지 않으므로 해석모델에서는 제외하고, 작은보의 자중과 중력 하중 전달은 바닥하중입력시 고려합니다.
- 지하구조물은 횡력에 영향을 받지 않고, 지진시 지반과 함께 거동하는 것으로 가정하여 해석 모델에서는 제외합니다.
- 부재 설계시 영향면적에 따른 적재하중의 감소는 본 예제에는 고려하지 않습니다.

1-7 적용하중

중력방향 하중

				(단위: kN/m²)
	판매시설	업무시설	지붕	발코니
충	$2 \sim 3F$	$4 \sim 12F$	Roof	전층
고정하중	4.6	4.0	5.3	4.6
적재하중	4.0	2.5	2.0	4

모델에 적용되는 하중은 실의 용도와 마감의 종류에 따라 상세히 구분되어야 하지만, 본 예제에서는 해석의 편의를 위해 위의 표와 같이 대표적인 하중만을 적용합니다. 적재하중은 등분포 적재하중이 작용할 때 구조부재에 더 큰 응력이 발생하는 것으로 가정하고, 집중 적재하중은 생략합니다.

풍하중

건축물에 작용하는 풍하중은 "건축구조설계기준(KBC 2009)/국토해양부"를 적용하며, midas Gen의 풍하중 자동연산기능을 이용하여 입력합니다. 지형에 의한 풍속할증은 불필요한 것으로 가정합니다.

설계 기본 풍속	30 m/ sec (서울지역)
노풍도	В
중요도 계수	1.0
가스트 영향계수	G _x : 1.9265 / G _y : 1.9208 (강체건축물)

지형에 의한 풍속할증은 불필요한 것으로 가정합니다.

지진하중

지진하중은 "건축구조설계기준 (KBC 2009)/건설교통부"을 적용하며, 응답스펙트럼과 등가정적 해석법 두가지 방법에 대해 모두 평가하겠습니다. 지진하중은 midas Gen의 하중조건 생성기능을 이용하여 입력합니다.

지역계수	A=0.22 (지진구역 I)
지반종류	S _d
내진등급	Ι
중요도계수	I _E =1.2 (내진등급 I, 도시계획구역)
내진설계범주	D
건물의 높이	$H_n = 50 m$
건물의 폭	$B_x = 36m, B_y = 29.1m$
반응수정계수	R = 5.5

지진력의 25%이상을 부담할 수 있는 중간 모멘트골조가 전단벽과 조합되어 수직하 중 및 횡력을 건축물 수직저항 부재의 강성비에 따라 부담하는 것으로 가정합니다.

• 단위 하중조합

단위하중 조건을 다음과 같이 부여합니다.

하중조건번호	하중조건이름	발코니
1	DL	자중 + 고정하중
2	LL	활하중
3	WX	풍하중 (전체좌표계 X 방향)
4	WY	풍하중 (전체좌표계 X 방향)

KBC2009를 적용한 철근콘크리트 골조와 전단벽을 가진 이중골조 시스템

midas Gen 2015

이 장에서는 예제모델의 기하학적 형상과 모델을 구성하는 요소들의 재질과 단면성질 그리고 경계조건 및 작용하중을 입력합니다.

midas Gen에서는 단위계, 사용자 좌표계, Snap 상황 또는 Activity 등을 사용자가 원하 는 대로 설정하여 사용할 수 있습니다.

효율적인 구조해석작업을 수행하기 위해서는 사용자가 이러한 기능들을 이용하여 효과적인 작업환경을 구축하는 것이 가장 중요합니다.

초기환경으로 2층 바닥의 요소 입력이 용이하도록 UCS와 선그리드 및 View Point를 설정합니다.

Toolbar의 배치는 Steel Application을 참조하여 동일하게 배치합니다.

2-1 단위계 설정

- 1. 🕒 New 클릭
- 2. 🔚 Save를 클릭하고, 파일 이름에 'RC'입력
- 3. 저장(S) 버튼 클릭

2-2 UCS 설정

2층 바닥의 입력편의를 위해 2층 바닥 위치 GCS X-Y평면을 UCS X-Y평면으로 설정 합니다.

- 1. Main Menu에서 Structure > UCS/Plan > UCS > X-Y Plane 클릭
- 2. Origin 입력란에 '0, 0, 5' 입력
- 3. Rotation Angle 입력란에 '0' 확인
- 4. Change View Direction에 '√' 표시
- 5. OK 버튼 클릭

✔ 사용자의 초기환경 설정
 에 따라 Icon Menu 의
 Toggle on 상황은 달라질
 수 있습니다. 불필요한
 Icon은 Toggle off 하여 혼
 돈을 방지하는 것이 바람
 직합니다.

2-3 선그리드 설정

일반적인 장방형 Frame의 입력이 용이하도록 선그리드를 배치합니다.

- Main Menu^Q | Tools > Setti ng > Preferences에서 초기 화면의 Grid, View Point, S nap, 재질과 Output Format 의 초기값을 설정하거나 변경할 수 있습니다.
- 1. Main Menu에서 Structure > UCS/Plan > Grids > Define Line Grid 클릭 *
- 2. Add 비튼 클릭
- 3. Grid Name 입력란에 '2F' 입력
- 4. X-Grid Lines란에서 Add 버튼 클릭
- 5. 'Relative' 확인
- 6. Lines입력란에 '4@9' 입력 후 0K 버튼 클릭
- 7. Y-Grid Lines란에서 Add 버튼 클릭
- 8. 'Relative' 확인
- 9. Lines 입력란에 '10.2, 7.2, 10.2, 1.5' 입력 후 0K 버튼 클릭
- 10. Add/Modify Grid Lines 대화상자의 버튼 클릭 0K
- 11. Define Grids 대화상자의 버튼 클릭 OK
- 12. 🎹 Line Grid, 🐺 Line Grid Snap이 Toggle on 되어있는지 확인
- 13. 🔘 Zoom Fit 클릭
- ✤ Fast Query기능은 Snap된 절점이나 요소의 속성을 보여주는 기능으로 그림 2.1 ①의 ? 를 클릭하면 Toggle Off됩니다. Fast Query기능으로 확인 할 수 있는 속성은 다음과 같습니다.

View Structure Node/Eleme	nt Properties	Blundary	Load Ahaysis	Results	Pushover	Desig	n Query	Tools	Moos	Module	_			Ut Help * - •
🗿 🏹 📻 🖓 Dynamic * 🛄 Va	ew Point -	C Shrink	ik Select ×	19.1	周 [2]	:	UCS/GCS -		L E	Close *	The Horizontally			
draw Initial Previous (1) Con -	Hidden	Perspective	" Unselect *	Active In	active All	Inverse	Grids *	Display	New	Next	The Vertically			
Dynamic View		lender View	Select	_	Advites	Active	010/2010	Display	Winds	Window	Window file			
	<u> ()</u>	Q. Q. 14 (B)	N	1		10	8 8 10 10	141178	104		1.0.0.0110			
Menu 3 x	4 B Model	Wirw ×												
nu Tables Group Works Report						_		_	_					1
Structure Analysis														5
Geometry														12
Besparse Spectrum Analysis														
Ay Time History Analysis														
T Settlement Analysis Data														6
Composite Section Analysis Data														E
Nonlinear Analysis Data														i c
Construction Stage Analysis Data Results														
Design														4
C uony														1
														9
														4
					-	<								
					L.									
					4	1								
					-		/							
	1													
	Message Window													+ ×
	1													^
														*
	>>		/			_		_	_			1.0		
Hela, press F1		mmano slessage	A Analysis liessage									Nanet U.O.O.O	c.o.o kit • m •	<
														•

2.1 UCS와 선그리드의 결정

- - 절점번호 좌표 요소번호 요소종류 재질/단면/두께번호 Beta Angle 연결된 절점번호 요소길이/면적/체적

2-4 부재재질과 단면데이터의 입력

요소를 생성하기 전에, 사용재질 및 저층부 보와 거더의 단면데이터를 입력합니다. 재질번호는 동일한 재료를 사용하더라도 부재의 종류(Girder, Column, Brace 등)별로 가급적 다양하게 부여하는 것이 바람직합니다.

재질번호	이름	종류	재료강도
1	Girder	Concrete	$f_{ck}' = 24 \ N / mm^2$
2	Column	Concrete	$f_{ck}' = 24 \ N / mm^2$
3	Wall	Concrete	$f_{ck}' = 24 \ N / mm^2$
4	Girder(2~4F)	Concrete	$f_{ck}' = 24 \ N / mm^2$
5	Column(1~4F)	Concrete	$f_{ck}' = 24 \ N / mm^2$
6	Wall(1~4F)	Concrete	$f_{ck}' = 24 \ N / mm^2$

표 1.1 사용재질

- 1. Main Menu에서 Properties > Material > Material Properties 클릭
- 2. Add,.. 버튼 클릭
- 3. Type of Design 선택란에서 'Concrete' 선택
- 4. Standard에 'KS01(RC)', Code 'KCI-2012' 선택
- 5. DB선택란에서 'C24' 선택
- 6. Name입력란에 'Girder' 입력 후, Apply 버튼 클릭
- 7. 동일한 방법으로 '재질 2~6'을 입력하고 OK 버튼 클릭

Properties				×
Material Section	n Thicknes	s		
ID Name 1 Girde 2 Colu, 3 Wall 4 Gird., 5 Colu, 6 Wall,	P Type r Concr., Concr., Concr., Concr., Concr., Concr.,	Standard KS01(RC) KS01(RC) KS01(RC) KS01(RC) KS01(RC)	DB C24 C24 C24 C24 C24 C24	Add Modify Delete Copy Import Eenumber
				<u>C</u> lose

그림 2.2 단면성질 대화상자

Naterial Data	×
General	
Material ID 1	Name Girder
Elasticity Data	
Type of Design Concrete 👻	Steel
	DB
	Product
	Concrete
	Standard KS01(RC) -
Type of Material	Code KCI-2012 -
	DB C24 -
Steel Modulus of Elasticity : 0.0000e+000	kN/m²
Poisson's Ratio : 0	
Thermal Coefficient : 0,0000e+000	1/[C]
Weight Density : 0	kN/mº
Use Mass Density: 0	kN/mº/g
Concrete	
Modulus of Elasticity : 2,5/91e+007	kN/m²
Poisson's Hatio : U. 167	
Thermal Coefficient : 1,00008-005] 1/[C]
Weight Density : 23,54	kN/m ^a
	KN/III/g
Plasticity Data	
Plastic Material Name NONE	-
Thermal Transfer	
Specific Heat : 0	kcal/kN·[C]
Heat Conduction : 0	kcal/m·hr·[C]
Damping Ratio : 0,05	
0	K Cancel Apply

그림 2.3 재질 데이터 입력

가정 단면 데이터는 작용하는 중력방향 하중에 의한 부재별 응력과 처짐을 약산하여 이를 만족하는 가정단면을 선정하여 입력합니다. 따라서, 단면 크기가 같더라도 작용하중이나 경계조건 등이 다를 경우에는 다른 단면 종류로 입력합니다. (단면번호 부여방법은 Steel Application 참조) 그림 1.2의 가정단면데이터를 참조하여 그림 2.4과 같이 단면데이터를 입력합니다.

- 1. Properties 대화상자에서 Section탭 선택
- 2. Add... 버튼 클릭
- 3. Section ID 입력란에 '211' 입력
- 4. Name 입력란에 'G1' 입력
- 5. 단면의 형상 선택란에 'Solid Rectangle' 선택
- 6. DB/User선택란에서 'User' 선택
- 7. H 입력란에 '0.7', B 입력란에 '0.4' 입력
- 8. OK 버튼 클릭
- 9. Properties 대화상자의 Close 버튼 클릭

Section Data	×
DB/User	
Section ID 211	Solid Rectangle 🗸
Name G1	● User ◎ DB KS -
FB	Sect, Name
Ļ	Get Data from Single Angle DB Name KS Sect, Name
	H 0.7 m B 0.4 m
Offset: Center-Center Change Offset	☑ Consider Shear Deformation,
Show Calculation Results	OK Cancel Apply

그림 2.4 단면 데이터 입력

 General Show Calculation Results...
 버튼을 클릭하면 해당 단 면의 강성데이터를 확인 할 수 있습니다.

여기서는 MGT Command Shell기능을 이용하여 단면데이터를 입력하는 방법에 대해 알아봅니다.

MGT Command Shell은 midas Gen의 Text형식 모델 데이터 파일인 fn .MGT의 명령어 형식대로 모델데이터를 입력하는 기능입니다.

- 1. Windows 바탕화면에서 💽 midas Gen 실행
- 2. Quick Menu에서 🎦 New 클릭
- 3. Open을 클릭하여 예제 첨부파일인 'RC(KBC2009).mgb' 클릭
- 4. File Menu에서 Export > midas Gen MGT File 선택
- 5. 경로를 지정하고 파일이름으로 'RC(mgt)'를 입력
- 6. 저장(S) 버튼 클릭
- 7. 그림 2.5의 Text Editor에서 '*SECTION'의 모든 단면데이터를 마우스로 선택
- 8. 마우스의 우측버튼을 클릭하여 Copy 선택
- 9. RC.mgb 파일로 돌아와서 Main Menu의 Tools > Command Shell > MGT Command Shell 클릭
- 10. 마우스의 우측버튼을 클릭하여 'Paste' 선택
- 11. 그림 2.6 ❶의 Run 버튼 클릭
- 12. 그림 2.6 ❷의 Message 확인 후 Close 버튼 클릭 [®]
- 13. Properties 대화상자에서 Section탭 클릭
- 14. 추가된 단면데이터 확인
- 15. RC.mgb파일을 제외한 모든 창 종료

그림 2.5 Exported MGT File (RC(mgt).mgt)

"Ctrl + F"기능을 이용하면
 "*Section"의 데이터가 있
 는 위치를 쉽게 찾을 수 있
 습니다.

```
    Ⅰ 다른 모델파일에서 단면
정보를 가져오는 방법으
    Ⅰ MGT Command Shell을 이
용하는 방법이외에
    Ⅰ Section Properties 대화창
    Ⅰ 에서 Import기능을 이용하
    여 간단하게 입력할 수도
    Ⅰ 있습니다.
```


그림 2.6 MGT Command Shell을 이용한 단면데이터 입력

× Properties Material Section Thickness <u>A</u>dd... ID Name Туре Shape 101 C1 102 C1 SB User Modify... SB User <u>D</u>elete 103 C1 User SB 105 C1 105 C1 105 C1 106 C1 111 TC1 151 C1A User SB <u>С</u>ору User SB User SB Import SB User <u>R</u>enumber SB User 152 C1A 153 C1A User SB User SB 154 C1A 155 C1A 156 C1A SB SB User User User SB 201 C2 User SB 202 C2 SB User • <u>C</u>lose

- 1. Properties 대화상자에서 "Thickness" 탭 선택
- 2. Add... 버튼 클릭
- 3. Thickness ID 입력란에 '200' 입력
- 4. Thickness의 In-plane & Out-of-plane 입력란에 '0.2' 입력
- 5. OK 버튼 클릭
- 6. Close 버튼 클릭

✔ Massage Window 창에
 ₩arning 메시지가 발생하
 는 이유는 이미 page.18에
 서 설정하였던 "G1"단면
 과 중복되기 때문에 나타
 나는 것입니다.

2-5 2층 바닥요소 입력

2층 바닥요소를 선그리드를 이용하여 입력합니다. 입력순서는G1,G2,G3,G4,WG1,WG2,WG3 순서대로 입력하며 절점번호, 요소번호는 [그림 2.8]을 참고하여 그림과 일치되도록 요소를 입력합니다.

- 1. 🔂 Hidden, Node Numbers, Node Numbers, Display Element Numbers 클릭 (Toggle on)
- 2. Main Menu에서 Node/Element > Element > Create Elements 클릭
- 3. Element Type 선택란에서 'General beam/Tapered beam' 확인
- 4. Material Name 선택란에서 '1: Girder' 확인
- Section Name 선택란에서 '211:G1' 선택 평면상에서 G1의 위치를 확인하여 시작점과 끝점을 클릭하여 요소를 생성[®] (그림 1.2 참조)
- 동일한 방법으로 G2, G3, G4, WG1, WG2, WG3 순으로 2층 바닥의 보 요소를 생성
- 7. 🌐 Line Grid, 🔛 Line Grid Snap 클릭 (Toggle off)

♥ Line Grid의 교점을 클릭 하여도 요소가 생성되지 않는 경우에는 Nodal Connectivity 입력란을 마 우스로 한번 클릭하여 연 초록색으로 색이 반전되 면 다시 부재 위치를 클릭 해 줍니다.

 ✔ Steel Application의 경우와 같이 Frame Wizard를 사용 하여 2층 바닥을 생성할 수 있습니다.
 그러나 Frame Wizard를 사 용할 경우네는 본 예제의 모델과는 절점번호, 요소 번호가 일치하지 않으므 로 주의하여야 합니다.

- ♥ 따라하기의 원활한 진행 을 위해서 절점 및 요소의 번호를 그림과 일치하도 록 모델을 생성합니다.
- ♥ Element 요소 '2, 4, 6, 7, 10'
 은 모델 상부의 캔틸레버 요소(Node 4, 8, 12, 16, 20)
 까지 한번에 생성합니다.

✤ Element Snap은 입력된 수

의 등분위치에서 Snap이 되는 옵션으로서 부재를

분할과 동시에 작업이 가

능합니다.

2. 구조 모델링

코어벽체 및 불연속 벽체 모델에 필요한 절점 생성을 위해 요소 분할 기능을 이용합니다.

- 1. Section Name 선택란에서 '221: WG1' 선택
- 2. 그림 2.9 ●의 Element Snap 조정란에 '3' 입력
- 3. 요소 34의 1/3 지점과 요소 35의 1/3 지점을 클릭하여 요소 37 생성 (그림 2.9 ❷ 참조)
- 4. Element Snap 분할 개수 입력란에 '2' 입력
- 5. 요소 38의 1/2지점과 요소 39의 1/2지점을 클릭하여 요소 40생성 (그림 2.9 ❸ 참조)
- 6. 🚺 Select Single을 이용하여 요소 '32, 37'를 선택
- 7. 기능목록표에서 Divide Elements 선택 Element Type 선택란에서 'Frame' 확인
- 8. Divide 선택란의 'Equal Distance' 확인
- 9. Number of Division x입력란에 '2' 확인 후 Apply 버튼 클릭
- 10. 🚺 Select Single을 이용하여 40번 요소 선택
- 11. Element Type 선택란에서 'Frame' 확인
- 12. Divide 선택란의 'Parametric Unequal Distance' 선택®
- 13. Ratio x 입력란에 '1/3' 입력 후 Apply 버튼 클릭

그림 2.9 코어부 보요소의 입력

♀ Parametric Unequal Distan ce는 요소좌표계를 기준 으로 요소길이의 상대부 등간격 비율을 입력하여 요소를 분할합니다. 따라 서 그림 2.10과 같이 요소 분할이 되지 않은 경우는 요소좌표계가 다르기 때 문이므로 Ratio x 입력란 에 '2/3' 을 입력합니다.

MIDAS

- 1. 🏋 Select Single을 이용하여 36번 요소 선택
- 2. Element Type 선택란에서 'Frame' 확인
- 3. Divide 선택란의 'Equal Distance' 선택
- 4. Number of Division x 입력란에 '3' 입력 후 Apply 버튼 클릭
- 5. 🏋 Select Single을 이용하여 36, 46번 요소 선택
- 6. Number of Division x입력란에 '2' 입력 후 Apply 버튼 클릭
- 7. 💻 Display 클릭

0K

- 8. Property 탭의 Property Name에 '√' 표시하고, OK 버튼 클릭
- 9. 🔊 Display Node Numbers 클릭(Toggle off)

버튼 클릭

- 10. 🔲 Shrink를 클릭하여(Toggle on) 요소의 입력 상태를 확인(그림 2.11 참조)
- 11. 입력상태 확인 후 Property탭의 Property Name에 '√' 표시 해제 후

그림 2.10 불연속벽체 절점 생성

그림 2.11 2층 바닥 보요소의 입력상황 확인

2-6 1층 기둥요소 생성

2층 바닥요소 입력시 생성된 절점을 선요소로 확장 변환하는 Extrude Elements기능을 이용하여 1층 기둥요소를 생성시킵니다.

- 1. Main Menu에서 Grids/Snap > UCS/GCS > GCS 클릭
- 2. Node Numbers 클릭(Toggle on)
- 3. () Select All 클릭
- 4. Unselect by Window를 이용하여 절점 '4, 8, 12, 16, 20, 26, 27, 28, 29, 30, 31, 32'과 절점 '33, 34, 35, 36'선택'
- 5. Main Menu에서 Node/Element > Elements > Extrude Elements 선택
- Extrude Type 선택란에서 'Node → Line Element' 확인 Reverse I-J 입력란에 '√'표시[®]
- 7. Element Type 선택란에서 'Beam' 확인
- 8. Material 선택란에서 '2 : Column' 선택
- 9. Section 선택란에서 '101 : C1' 선택
- 10. Generation Type 선택란에서 'Translate' 확인
- 11. Translation 선택란에서 'Equal Distance' 확인
- 12. dx, dy, dz 입력란에 '0, 0, -5' 입력
- 13. Number of Times 입력란에서 '1' 확인하고, Apply 버튼 클릭
- 13. 🔲 Iso View 클릭
- 14. 🔲 Shrink 클릭(Toggle off)

그림 2.12 Extrude기능을 이용한 기둥생성

Unselect 된 절점들은 코어
 부와 캔틸레버 보, 벽체를
 구성하는 절점으로 기둥
 이 생성되지 않는 위치입
 니다.

♀ Reverse LJ 선택란 Extrude 수행시 Translate 방향과 반대로 요소의 생 성방향을 결정합니다. 요소의 생성방향과 요소 좌표계는 부재력 확인시 혼돈을 방지하기 위해 가 급적 일치시킵니다.

2-7 생성된 기둥요소 단면변경

Extrude기능에 의해 생성된 기둥요소의 단면 번호를 Work Tree의 Drag&Drop 기능을 이용하여 [그림 1.2] 구조평면도와 같이 변경합니다.

- 1. Tree Menu의 Works탭(그림 2.13의 참조) 선택
- 2. Works탭의 Properties > Section에서 '101:C1'을 선택한 후 오른쪽 마우스 클릭
- Context Menu에서 Active(그림 2.13의 ❷ 참조)를 클릭하여 기둥 요소(C1)만을 활성화
- 4. N Display Node Numbers 클릭 (Toggle off), 🔲 Top View 클릭
- 5. Display를 클릭하여 Property 탭의 Property Name에 '√'표시
- 6. OK 버튼 클릭
- 7. 🛐 Select by Window를 이용하여 변경될 단면 선택(그림 1.2 참조)
- 8. Works탭의 Properties > Section에서 '151:C1A'를 선택한 후, 모델윈도우로 Drag&Drop (그림 2.14의 ❶ 참조)
- 9. 동일한 방법으로 그림 2.14을 참고하여 1층 기둥요소의 단면번호변경

그림 2.13 Select Identity를 이용한 속성별 선택

		Gen 2015 - [D:\Tutori	ilwRC(KBC2009)WRC *] - [Model View]			- # X
View Structure Node/Element Properties Boundary Load Analysis Results	Pushover Design Quer	y Tools MODS Module				0 Hep *
2 Superior Compact Numbers 9	on Curve	🗶 💦 🗶 🗡 Delet	compact Numbers	Effective Beam - "	Column Capital * 🔚 Auto-mesh	Define Sub-Domain
Create Translate Divide Merge Project & Statt Number Translate Divide Merge Wall Corona	e Elements Translate Extrude D	livide Merge Intersect	Change El	Innents Column Strip *	Map-mech	
Notes		Elements	Paranteers	Flat/Flate S	Structure Mi	sh
Im++++: Im++++: Im++++: Im++++: Im+++++: Im+++++: Im+++++: Im+++++: Im++++++: Im+++++: Im++++: Im++++: Im++++: Im++++: Im++++: Im++++: Im++++: Im++++: Im++++: Im+++: Im++: Im+++: Im+++: Im++: Im++: Im++: Im++: Im++: Im++: Im++	i 18 18 🖛	: 🖸 🕍 i 🕅 i 🖾 🐗 🔂 🤅) 🗏 🖳 M 🗛 🖉 🖄 🔂 🔒 🗍			
Tree Menu						Þ.
Carl 3 : Wall						
- (1) 4 : Girder(2~4F) - (1) 5 : Calumo(1~4F)	C4	C2	C2	C2	C4	888
5 (Wal(1-47)						197
- I 104 : C1 - T 105 : C1						
- I 106 : CI						9
- I 151 : C1			·			
- T 153 : C						0
Drad	C	CI	CHV	CHV .	C3	0°
- I 202 : C2						
- I 204 : C2						
- T 206 : C2						6
- I 211:61 s	61	ret.	CEA	CHA	61	
- I 213:63	<u> </u>		. <u></u> ,	-1 <u>1</u> 1-		
- I 214:04 - I 215:63A						<u>A</u>
- I 221 : WG1 - I 222 : WG2			·			
- I 223 : WG3			Salaa	tion		<u>[11</u>
- I 302 : C3			Selec	uon		
- I 303 : C3 - I 304 : C3	~					
- <u>I</u> 305 : C3 - <u>T</u> 305 : C3	Ϋ́]					
- I 311 : TC3		C2	C2	C2	64	
- <u>I</u> 402:C4		· ·		·	•	
- I 403 : C4 - I 404 : C4						
1 405 : C4 1 405 : C4 Message Window						₹ ×
-I 411:G1						*
- I 413:63						-
Tree Meny Trik Pare						
For Help, press F1				Nonel Ut 0, 10.2, 5	G: 0, 10.2, 5 kN 🔹	m • 🔿 🗠 🕨 non • 😰 🚺 1 ; / 2 🛫

그림 2.14 1층 변경된 기둥단면 확인

2-8 벽요소 생성

벽요소 생성시에는 벽요
 소가 생성될 위치에 반드
 시 절점이 있어야 합니다.

↓ 그림 2.15 ●의 절점선택
 란 '26 to 32' 입력 후 엔터
 를 치면 복제대상 절점이
 선택됩니다.

2층 바닥에 생성된 절점을 1층 바닥으로 복제하여 벽요소를 생성합니다. 🖲

- 1. 🍺 Activate All 클릭
- 2. 🚮 Hidden 클릭(Toggle off), N Display Node Numbers 클릭(Toggle on)
- 3. 🛅 Iso View 클릭
- 4. Display를 클릭하여 Property탭의 Property Name에 '√' 선택 해제(Check off)
 후 OK 버튼 클릭
- 5. [Select by Window를 이용하여 절점 '26, 27, 28, 29, 30, 31, 32' 선택 [®] (그림 2.15 ●)
- 6. Main Menu에서 Node/Element > Nodes > Translate Nodes 클릭
- 7. Mode 선택란에서 'Copy' 확인
- 8. Translation 선택란에서 'Equal Distance' 확인 후, dx, dy, dz 입력란에 '0, 0, -5' 입력
- 9. Number of Times 입력란에서 '1' 확인 후, Apply 버튼 클릭
- 10. 🔲 Top View 클릭
- 11. Selection Filter by Direction 선택란[그림 2.15 €] 에서 'none' 확인
- 12. 🛐 Select by Window를 이용하여 [그림 2.16 0]과 같이 선택
- 13. [Activate, 🔲 Iso View 클릭

그림 2.15 벽요소를 구성하는 절점 복제

그림 2.16 코어부 선택

복제한 절점을 이용하여 벽요소를 입력합니다.

- 1. 기능목록표에서 Create Elements 클릭
- Element Type 선택란에서 'Wall' 선택하고, Membrane 선택 확인, Wall ID '1' 확인* Material Name 선택란에서 '3 : Wall' 선택
- 3. Thickness 선택란에서 '200: 0.2' 확인
- 4. Intersect의 Node에 '√' 표시 확인
- 5. Display를 클릭하여 Element탭의 Wall ID에 '✓'표시 후,
 OK 버튼 클릭
- 6. 절점 '44, 45, 11, 10'을 마우스로 클릭하여 Wall ID 1 생성 (그림 2.17 (a) ● 참조)
- 7. 절점 '44, 57, 26, 10'을 마우스로 클릭하여 Wall ID 2 생성
- 8. 절점 '61, 62, 31, 30'를 마우스로 클릭하여 Wall ID 3 생성
- 9. 절점 '45, 58, 27, 11'을 마우스로 클릭하여 Wall ID 4 생성
- 10. 절점 '63, 60, 29, 32'를 마우스로 클릭하여 Wall ID 5 생성
- 11. 절점 '59, 47, 14, 28'을 마우스로 클릭하여 Wall ID 6 생성
- 12. 절점 '60, 48, 15, 29'를 마우스로 클릭하여 Wall ID 7 생성
- 13. 절점 '47, 48, 15, 14'를 마우스로 클릭하여 Wall ID 8 생성
- 14. 코어부 벽요소 생성을 확인 (그림 2.17 (a) 참조)
- 15. [Activate All클릭, 🔂 Hidden클릭(Toggle on) (그림 2.17(b) 참조)

 ♥ Element Typed의 Wall ID 선택란에 Auto Inc로 되어 있으면 Wall ID가 자동으 로 1씩 증가하면서 생성됩 니다.

(a)

그림 2.17 2층 바닥요소, 1층 기둥요소 및 벽요소 생성

2-9 Beam End Release 조건 입력

모델에 포함된 작은보들은 양단부가 거더에 의해 단순지지되는 것으로 가정하여 Beam End Release 조건을 부여합니다.

- Icon Menu에서 ▲ Angle View를 클릭
 Horizontal에 '25', Vertical에 '70' 입력한 후에 OK 버튼 클릭
- 3. Q Zoom Window 클릭하여 코어부를 확대 (그림 2.18 참조)
- 4. 화면 좌측 Tree Menu에서 Boundary탭 선택
- 5. 기능목록에서 Beam End Release 선택
- 6. [그림 2.18 ●]의 요소선택란에 '37, 40' 입력 후 엔터
- 7. Beam End Release대화창의 General Types and Partial Fixity 선택란에서

Pinned-Fixed 버튼 클릭

- 8. Apply 버튼 클릭
- 9. 요소선택란에 '44, 45'입력 후 엔터

10. General Types and Partial Fixity 선택란에서 Fixed-Pinned 버튼 클릭

- 11. Apply 버튼 클릭
- 12. 🔘 Zoom Fit 클릭
- 13. 📃 Display를 클릭하여 🛛 Reset All 버튼 클릭
- 14. OK 버튼 클릭

그림 2.18 Beam End Release 조건의 입력

2-10 하중조건 설정

구조물에 작용하는 중력방향 및 횡방향 하중을 입력하기 전에 하중조건(Load Case)을 설정합니다.

하중조건을 설정하기 위해 Load Case Name 선택란 우측의 버튼 (또는 Main Menu에서 Load > Create Load Cases > Static Load Cases)을 클릭하여 Static Load Cases대화상자를 호출한 다음 아래와 같이 하중조건을 입력합니다.

- 1. Tree Menu에서 Load탭 선택
- 2. Load Case Name 선택란 우측의 버튼 클릭
- 3. [그림 2.19]와 같이 Static Load Cases 대화상자의 Name 입력란에 'DL' 입력
- 4. Type 선택란에서 'Dead Load' 선택 Description 입력란에 'Dead Load' 입력
- 5. <u>A</u>dd 버튼 클릭
- 6. Static Load Cases 대화상자에나머지하중조건을 [그림2.19]와동일하게입력
- 7. 입력완료 후, <u>C</u>lose 버튼 클릭

Nai Typ	me De	: EY : Earthquak	e (E)	•	<u>A</u> dd <u>M</u> odify	
Des	scription	ו: Earthquak	e Y-dir		Delete	
	No	Name	Туре	Descri	ption	-
	1	DL	Dead Load (D)	Dead Load		
	2	LL	Live Load (L)	Live Load		
	3	WX	Wind Load on Structure (W)	Wind Load X-dir		
	4	WY	Wind Load on Structure (W)	Wind Load Y-dir		
	5	EX	Earthquake (E)	Earthquake X-dir		
•	6	EY	Earthquake (E)	Earthquake Y-dir		
*	1					Ε
						-

그림 2.19 하중조건 설정

 하중조건 설정에 대한 자 세한 내용은 '따라하기 1'
 의 하중조건 설정 부분 참 조

지진하중은 응답스펙트럼
 해석을 수행할 것이므로
 정적지진하중은 입력하지
 않습니다.

2-11 Beam Load 입력

Building Generation 기능을 이용하여 상부층 모델을 생성 시킬 때 Beam Load의 복제 가 가능하기 때문에 Building Generation을 하기 전에 먼저 Beam Load를 이용하여 발 코니 하중을 입력합니다.

- 1. La Display Element Numbers 클릭(Toggle on)
- 2. 🏋 Select Single을 클릭하여 Element 요소 '23, 26, 28, 30' 선택
- 3. 기능목록표에서 Element Beam Loads 선택
- 4. Load Case Name 선택란에서 'DL' 확인
- 5. Load Type 선택란에서 Trapezoidal Loads 선택
- 6. Vaule란에 Relative 확인
- 7. x1: '0', x2: '1.5/9', x3: '1-1.5/9', x4: '1'입력
- 8. W1: '0', W2: '-6.9', W3: '-6.9', W4: '0' 입력
- 9. Apply 클릭
- 10. 🕟 Select Previous 클릭
- 11. Load Case Name 선택란에서 'LL' 선택
- 12. W1 : '0', W2 : '-6', W3 : '-6', W4 : '0' 입력
- 13. Apply 클릭

그림 2.20 Beam Load 입력

- 1. 🚺 Select Single을 클릭하여 Element 요소 '24, 25, 27, 29, 31' 지정
- 2. Load Case Name 선택란에서 'DL' 선택
- 3. x1: '0', x2: '1', x3: '0', x4: '0'입력
- 4. W1: '0', W2: '-6.9', W3: '0', W4: '0' 입력
- 5. Apply 클릭
- 6. 🕟 Select Previous 선택
- 7. Load Case Name 선택란에서 'LL' 선택
- 8. W1: '0', W2: '-6'입력
- 9. Apply 클릭

그림 2.21 Beam Load 입력

- 1. 🏋 Select Single을 클릭하여 '28, 29, 30' 지정
- 2. Load Case Name 선택란에서 'DL' 선택
- 3. x1: '0', x2: '1' 입력
- 4. W1: '0', W2: '-6.9' 입력
- 5. Apply 버튼 클릭
- 6. 🏋 Select Single을 클릭하여 '28, 29, 30' 지정
- 7. Load Case Name 선택란에서 'LL' 확인
- 8. W1: '0', W2: '-6' 입력
- 9. Apply 버튼 클릭
- 10. Numbers 클릭(Toggle off)

그림 2.22 Beam Load 입력

2-12 Building Generation

지금까지 생성시킨 2층 바닥요소와 1층 기둥요소, 벽요소를 Building Generation 기능을 이용하여 상부층으로 복제합니다.

Building Generation기능을 이용하면 요소의 복제 시 발생되는 층고의 변화와 요소 종류별 단면번호의 증가를 모두 고려하여 한꺼번에 복제함으로써, 건축구조물을 간단하게 모델링할 수 있습니다.

- 1. () Select All 클릭
- 2. Main Menu에서 Structure > Building > Control Data > Building Generation 선택
- 3. Number of Copies 입력란에 '2'입력
- 4. Distance(Global Z)입력란에 '4.5'입력
- 5. Operations에서 Add 버튼 클릭
- 6. Number of Copies 입력란에 '9'입력
- 7. Distance(Global Z)입력란에 '4'입력
- 8. Operations에서 Add 버튼 클릭
- 9. Building Generation Table 버튼 클릭
- 10. [그림 2.23]과 같이 단면번호의 증분을 입력
- 11. OK 버튼 클릭
- 12. Copy Element Attributes 우측의 버튼 클릭
- 13. Boundaries의 Beam End Release에 '√'표시 확인
- 14. Static Loads의 Beam Load에 '√'표시 확인
- 15. OK 버튼 클릭
- 16. Apply 버튼 클릭
- 17. 🔲 Iso View 클릭
- 18. 📃 Display를 클릭하여 Boundary탭의 Beam End release Symbol, Load 탭의 Beam Load에 '✓' 표시
- 19. OK 버튼 클릭
- 20. 복제된 요소들의 Beam End Release, Beam Load 조건 확인
- 21. 💻 Display를 클릭하여 🛛 Reset All 🛛 버튼 클릭
- 22. OK 버튼 클릭
♥ Building Generation Table 에서 첫번째 열의 숫자는 복제할 치수를 의미합니 다. 예를 들면, 두번째 복 제를 수행할 때 즉, 2층의 요소를 3층으로 복제할 때 기둥의 단면번호에 '1'의 증분을 부여한다는 의미 입니다. 반드시 해야 할 과정은 아 니며, 나중에 모델데이터

니며, 나중에 모델네이터 관리에 유용하게 활용될 수 있는 기능입니다.

	Distance (m)	Material	Column	Beam	Brace	Wall	ſ
1	4.5000	0	1	0	0	0	
2	4.5000	0	0	200	0	0	
3	4.0000	0	1	0	0	0	
4	4.0000	0	0	0	0	0	
5	4.0000	0	1	0	0	0	
6	4.0000	0	0	0	0	0	
7	4.0000	0	1	0	0	0	
8	4.0000	0	0	0	0	0	
9	4.0000	0	1	0	0	0	
10	4.0000	0	0	0	0	0	
11	4.0000	0	0	0	0	0	
12							1

그림 2.23 Building Generation Table

그림 2.24 Building Generation을 이용한 상부층 모델의 생성

2-13 불연속벽체 생성

불연속 벽체를 생성합니다.

- 1. Main Menu에서 Structure > UCS/Plan > Named Plane 선택
- 2. Plane Name에 'B' 입력
- 3. Plane Type에서 'X-Z Plane'선택
- 4. B열상의 임의의 점을 지정하여 Y Position에 '10.2'을 자동입력
- 5. Add 버튼 클릭
- 6. 陆 Active Identity 에서'Named Plane'을 선택하고 'B' 클릭
- 7. Active 버튼 클릭
- 8. 🔲 Front View 클릭
- 9. Display를 클릭하여 Element탭의 Wall ID에 '✓'표시 후, OK 버튼 클릭
- 10. Main Menu에서 Node/Element > Elements > Create Elements 클릭
- 11. Element Type 선택란에서 'Wall' 선택, Membrane 선택 확인
- 12. Wall ID '9' 입력
- 13. Material Name 선택란에서 '3 : Wall' 선택
- 14. Thickness 선택란에서 '200: 0.2' 선택
- 15. 절점 2, 34, 97, 65 순서대로 클릭하여 Wall ID 9 생성
- 16. 절점 65, 97, 133, 101 순서대로 클릭하여 Wall ID 10 생성
- 17. 절점 101, 133, 457, 425 클릭하여 Wall ID 11 생성
- 18. Close 버튼 클릭
- 19. 📃 Display를 클릭하여 Element탭의 Wall ID에 '√'표시 해제 후,

OK 버튼 클릭

2-14 보 단면요소 변경

지정되어 있지 않은 단면을 지정해 줍니다.

- 1. 🏋 Select Single 클릭
- 2. [그림 2.26]과 같이 2층벽 하부 보요소 선택
- 3. Tree Menu 에서 Works탭 클릭
- 4. Section에서 '215:G3A'을 Drag & Drop
- 5. [Activate All클릭

그림 2.25 불연속체벽 생성

그림 2.26 보 단면요소 변경

MIDAS

2-15 지붕 단면요소 변경

- 1. 🛐 Select by Window 클릭
- 2. [그림 2.27]과 같이 모델 맨 윗부분을 지정
- 3. 🍺 Activate, 🛅 Top View 클릭
- 4. Works 탭 Section에서 '411:G1' 더블클릭
- 5. Section에서 '511:RG1' 선택 후 모델 윈도우로 Drag & Drop
- 6. 동일한 방법으로 412:G2, 413:G3, 414:G4를 512:RG2, 513:RG3, 514:RG4로 변경
- 7. [[] Activate All클릭, [[]] Iso View 클릭

그림 2.27 지붕 단면 선택

그림 2.28 지붕 단면요소 변경

MIDAS

2-16 기둥 단면요소 변경

- 1. 요소 선택란(그림 2.29●참조)에 Element Number '54' 입력 후 엔터
- 2. Works 탭 Section에서 '111:TC1'을 Drag & Drop
- 3. 요소 선택란(그림 2.29●참조)에 '51' 입력 후 엔터
- 4. Works 탭 Section에서 '311:TC3'을 Drag & Drop

그림 2.29 기둥 단면 변경

2-17 층 데이터 입력

모델의 기하 형상이 완전히 입력되지는 않았지만 층 관련 부가기능을 이용하여 모델링을 쉽게 할 수 있도록 층 데이터를 먼저 입력합니다.

층 데이터는 하중기준에 의한 풍하중 및 지진하중의 자동연산 입력기능을 이용하 고자 할 때 반드시 입력되어야 합니다.

- 1. Main Menu에서 Structure > Building > Control Data > Story 선택
- 2. Auto Generate Story Data,,, 버튼 클릭 위
- 3. OK 버튼 클릭
- 4. Close 버튼 클릭

Module Name	Story Name	Level(m)	Height(m)	Flo Diaph	or ragm
Base	Roof	50.00	0.00	Consider	
Base	12F	46.00	4.00	Consider	
Base	11F	42.00	4.00	Consider	
Base	10F	38.00	4.00	Consider	
Base	9F	34.00	4.00	Consider	
Base	8F	30.00	4.00	Consider	
Base	7F	26.00	4.00	Consider	
Base	6F	22.00	4.00	Consider	
Base	5F	18.00	4.00	Consider	
Base	4F	14.00	4.00	Consider	
Base	31-	9.50	4.50	Consider	
Base	2F	5.00	4.50	Consider	
Story (Wind)	Seismic /	· · · · ·			
Automatic Ge	ta Defin eneration of Story	e Module Data			×
Automatic Ge	ta Defin eneration of Story d List	e Module, Data Selected List			x
Automatic Ge Unselected	eneration of Story d List Level	a Module, Data Selected List No Name	Level	Height	×
Automatic Ge	eneration of Story d List Level	a Module Data Selected List No Name 1 1F	Level	Height 5	×
Automatic G	eneration of Story d List Level	a Module Data Selected List No Name 1 1F 2 2F	Level 0 5	Height 5 4,5	×
Automatic G	eneration of Story d List Level	Data Selected List No Name 1 1F 2 2F 3 3F	Level 0 5 9,5	Height 5 4,5 4,5	×
Automatic G	eneration of Story d List Level ->	Data Selected List No Name 1 1F 2 2F 3 3F 4 4F	Level 0 5 9,5 14	Height 5 4,5 4,5 4	×
Automatic Gr Unselecter No	eneration of Story d List Level ->	Data Selected List No Name 1 1F 2 2F 3 3F 4 4F 5 5F	Level 0 5 9.5 14 18	Height 5 4,5 4,5 4 4	×
Automatic G	eneration of Story d List Level ->	Data Selected List No Name 1 1F 2 2F 3 3F 4 4F 5 5F 6 6F	Level 0 5 9.5 14 18 22	Height 5 4,5 4,5 4 4 4 4	×
Automatic G	eneration of Story d List Level -> <	Data Selected List No Name 1 1F 2 2F 3 3F 4 4F 5 5F 6 6F 7 7F	Level 0 5 9.5 14 18 22 26	Height 5 4,5 4,5 4 4 4 4 4 4	×
Automatic G	eneration of Story d List Level -> <-	Data Selected List No Name 1 IF 2 2F 3 3F 4 4F 5 5F 6 6F 6 6F 6 6F 6 8 8F	Level 0 5 9,5 14 18 22 26 30	Height 5 4,5 4 4 4 4 4 4 4 4	×
Automatic Gr Unselecter No	eneration of Story d List Level	Data Selected List No Name 1 1F 2 2F 4 4F 5 5F 6 6F 7 7F 8 8F 9 9F	Level 0 5 9.5 14 18 22 26 30 34	Height 5 4,5 4 4 4 4 4 4 4 4 4 4	×
Automatic Gr Unselecter No	eneration of Story d List Level -> <	Data Selected List No Name 1 1F 2 2F 3 3F 3 3F 5 5F 6 6F 7 7F 8 8F 9 9F 10 10F	Level 0 5 9,5 14 18 22 26 30 34 34 38	Height 5 4,5 4 4 4 4 4 4 4 4 4 4 4	×
Automatic G	d List Level	Data Selected List No Name 1 1F 2 2F 3 3F 4 4F 5 5F 6 6F 7 7F 8 8F 9 9F 10 10F 11 11F	Level 0 5 9,5 14 18 22 26 30 30 34 38 42	Height 5 4,5 4,5 4 4 4 4 4 4 4 4 4 4 4	×
Automatic Gr Unselecter	eneration of Story d List Level -> <-	Data Selected List No Name 1 1F 2 2F 2 2F 3 3F 4 4F 5 5F 6 6F 6 6F 6 6F 6 6F 7 7F 8 8F 9 9F 10 10F 11 11F 12 12F	Level 0 5 9.5 14 18 22 26 30 34 38 42 46	Height 5 4,5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	×
Automatic Gr	eneration of Story d List Level -> <-	Data Selected List No Name 1 1F 2 2F 4 4F 5 5F 6 6F 9 9F 10 10F 11 11F 12 12F 13 Roof	Level 0 5 9.5 14 14 18 22 26 30 30 34 38 42 46 6 50	Height 5 4,5 4 4 4 4 4 4 4 4 4 4 4 0	
Automatic Gr	eneration of Story d List Level -> <-> Seismic Accidem	No Name 1 1F 2 2F 3 3F 4 4F 5 5F 6 6F 7 7F 8 8F 9 9F 10 10F 11 11F 12 12F 12 12F 13 Eccentricity	Level 0 5 9,5 14 18 22 26 30 34 34 38 42 46 5 9 2 5 2 8 2 6 30 30 30 30 30 30 30 30 30 30 30 30 30	Height 5 4,5 4 4 4 4 4 4 4 4 4 4 4 4 0	

그림 2.30 Auto Generation을 이용한 Story Data 입력

✔ midas Gen에서는
 ✔ Story Data를 자동생성 할
 ♥ 대 입력되어있는 모든 절
 점의 Z 좌표를 층의 위치
 로 인식합니다.
 ♥ 마라서, Story Level이 아
 난 위치에 절점이 생성된
 경우에는 해당 층을
 ♥ Unselected List로 이동시
 켜 Story Data에서 제외되
 도록 합니다.

Wind와 Seismic탭에서는 풍하중과 지진하중을 자 동연산 하는데 적용될 풍 압면의 폭, 층의 중심, 우 발 편심거리 등이 층별로 정리되어 있으며, 사용자 수정도 가능합니다.

2-18 부재 재질 변경.

- 1. 🛃 Display Story Number 클릭
- 2. 陆 Activate by Identifying을 선택
- 3. Story 클릭 후, '1F~4F' 선택
- 4. '+Both' 체크 후, Active 클릭
- 5. Close 클릭
- 6. Tree Menu 에서 Works에서 '1:Girder' 더블 클릭
- 7. '4:Girder(2~4F)'를 선택하여 Drag & Drop
- 8. 2:Column와 3:Wall을 같은 방법으로 5:Column(1~4F), 6:Wall(1~4F)로 변경
- 9. 🎻 Display Story Number (Toggle off), [Activate All클릭

그림 2.31 부재재질변경

2-19 경계조건 입력

모델의 기하형상 입력이 완료되었으므로, 하단부에 지지조건을 입력합니다.

- 1. ell Select by Plane 클릭
- 2. Plane 대화상자의 'XY Plane' 선택
- 3. 1층 바닥의 임의의 절점을 지정하여 Z Position에 '0'을 자동입력

4. Close 버튼 클릭

- 5. Main Menu에서 Boundary > Supports > Define Supports 선택
- 6. Options 선택란에서 'Add'확인
- 7. Support Type 선택란에서 'D-All', 'R-All'에 '√' 표시
- 8. Apply 버튼 클릭

그림 2.32 구조물의 지지조건 입력

KBC2009를 적용한 철근콘크리트 골조와 전단벽을 가진 이중골조 시스템

midas Gen 2015

3-1 자중 입력

모델에 포함된 부재의 자중을 중력방향으로 고려합니다.

- 1. Load Menu에서 Self Weight 확인
- 2. Load Case Name 선택란에 'DL' 선택
- 3. Self Weight Factor 'Z' 입력란에 '-1' 입력
- 4. Operation에서 Add 버튼 클릭

Self Weig	Iht	_	_	_	•	
Load C	ase N	ame		•		1
Load G	roup l	Vame	,			J
Default				•		
Self We	ight F	actor	·			_
z	y X	Hgt.Z		Wgt. # Wgt.	Y .X	
X 0 Y 0 Z 0						
Load C	ase	X	Y	Z	Grou	P
DL		U	U	-1	Deta	ult
4						Þ
Operati	on					
Ado		Modi	fy	De	lete	
					Close	;

그림 3.1 자중의 입력

3-2 바닥하중 종류 입력

중력방향 하중을 바닥하중으로 입력하기 위해 기능목록표에서 Assign Floor Loads를 선택합니다. 바닥하중을 입력하기 위해서는 먼저 바닥하중 종류를 정의(Define Floor Load Type)합니다.

- 1. 기능목록표에서 Assign Floor Loads 선택
- 2. Load Type 선택란 우측의 버튼 클릭
- 2. Name 입력란에 '판매시설' 입력
- 3. Description 입력란에 '2~3F' 입력
- Load Case 선택란에서 'DL' 선택 후, Floor Load 입력란에 '-4.6' 입력하고, Sub Beam Weight에 '√' 표시 확인
- 5. Load Case 선택란에서 'LL' 선택 후, Floor Load 입력란에 '-4.0' 입력
- 6. Add 버튼 클릭
- 7. 동일방법으로 11page 중력방향 하중표와 [그림 3.2]를 참조하여나머지 하중을
- 입력 후, Close 버튼 클릭

– Flo N D	or Load Type N lame : escription : 2	Name & Descr 판매시설 2~3F	ription		
- Flo	or Load & Load	l Case			
	Load Case	Floor Load			
1.	DL	-4,6	kN/m²	🔽 Sub Be	am Weight
2,	LL ·	-4		📃 Sub Be	am Weight
З,	NONE	• 0	kN/m²	🗌 Sub Be	am Weight
4.	NONE	• 0	kN/m²	🗌 Sub Be	am Weight
5,	NONE	• 0	kN/m²	🔄 Sub Be	am Weight
6,	NONE ·	• 0	kN/m²	🗌 Sub Be	am Weight
- 7,	NONE	• 0	kN/m²	🗌 Sub Be	am Weight
8,	NONE	• 0	kN/m²	🗌 Sub Be	am Weight
	Define L	.oad Case			
	Name		Description	<u>^</u>	Add
\mathbf{F}	판매시설	2~3F			Modifu
Ц	업무시설	4~12F			mouny
	지붕	Roof			Delete
┡╇				=	

그림 3.2 바닥하중 형태 입력

해 형성된 삼각형 또는 사 각형의 폐구간에 적용할 수 있습니다. 폐구간 내의 절점은 동일한 평면에 위 치하여야 합니다. 하지만 그 평면이 X-Y평면과 평 행할 필요는 없습니다. Floor Load 기능을 이용하 면 경사지붕이나 외벽면 의 풍하중 또는 적설하중 도 간단하고 정확하게 입 력할 수 있습니다.

♥ Floor Load는 보요소에 의

MIDAS

3-3 바닥하중 입력

구조물에 작용하는 중력방향 하중을 입력합니다. 본 예제에서는 외벽 마감재나 설비시설(기계실, Cooling Tower 등)의 하중은 해석편의를 위해 생략합니다.

- 1. 🛃 Select by Plane 클릭
- 2. Plane 대화상자에서 'XY Plane' 선택
- 3. 2층 바닥 임의의 절점을 클릭하여 Z Position '5' 확인 후
 - Close 버튼 클릭
- 4. 🎦 Activate 클릭
- 5. 🚺 Node Number 클릭 (Toggle on)
- 6. Load Type 선택란에서 '판매시설' 선택
- 7. Distribution 선택란에서 'Two Way' 확인
- 8. No. of Sub Beams 입력란에 '1' 입력
- 9. Sub-Beam Angle(A2) 입력란에 '90' 확인
- 10. Unit Self Weight 입력란에 '6.72' 입력 🖗
- 11. Load Direction 선택란에서 'Global Z' 확인
- 12. Copy Floor Load에 '✓' 표시
- 13. Axis에 'Z' 확인 후, Distance 입력란에 '4.5' 입력
- 14. Nodes Defining Loading Area 입력란을 Mouse로 클릭하여 Mouse Editor 활성화
- 15. 절점 '1, 17, 19, 15, 14, 2, 1' 클릭
- 16. 절점 '2, 10, 11, 19, 25, 21, 2' 클릭
- 17. Distribution 선택란에서 'One Way' 선택 Load Angle(A1) 입력란에 '0' 확인 %
- 18. No. of Sub Beams 입력란에 '0' 입력
- 19. 절점 '26, 28, 29, 27, 26' 클릭

♥ Floor Load 입력내용에 오 류가 있으면 재하영역 지 정 후에도 화면에 Floor Load Label이 표시 되지 않 습니다. Floor Load 입력시 범하기 쉬운 오류는 다음 과 같습니다. 1. 요소의 중복입력

- 2. 요소종류 입력 오류
- (트러스 요소 불가) 3. 요소 분할 오류

(벽요소와 조합시) 4. 재하구간이 평면이 아 닌경우 가상보에 의해 분할된 구간이 오각형 이상의 다각형인 경우

♥ Unit Self Weight는 모델에 포함되지 않는 보요소의 자중을 고려하는데 주로 적용하며 해당 가상보와 연결되는 보요소 (또는 벽 요소)상에 직중하중 형태 로 자동고려됩니다, 집중 하중의 작용방향은 Floor Load입력란에 입력된 바 탁판 하중의 작용방향에 따릅니다.

 재하영역의 평면형상에 따라 A1을 '0'혹은 '90'으 로 변경하면서 재하영역 을 지정하면 좀더 간단하 게 하중을 입력할 수 있습 니다.

MIDAS

4~12F의 업무시설 하중을 입력합니다.

- 1. [▶ Activate All 클릭
- 2. 🛃 Select by Plane 클릭
- 3. Plane 대화상자에서 'XY Plane' 선택
- 4. 4층 바닥 임의 절점 클릭하여 Z Poisition 입력란에 '14'확인 후,

- 5. 🎦 Activate 클릭
- 6. Load Type 선택란에서 '업무시설' 선택
- 7. Distribution 선택란에서 'Two Way'선택
- 8. No. of Sub Beams 입력란에 '1' 입력
- 9. Sub-Beam Angle(A2) 입력란에 '90' 확인
- 10. Copy Floor Load에 '√' 표시 확인
- 11. Axis에 'z' 확인 후, Distances입력란에 '8@4.0'입력
- 12. Nodes Defining Loading Area 입력란을 마우스로 클릭하여 Mouse Editor 활성화
- 13. 절점 '100, 116, 118, 114, 113, 101, 100' 클릭
- 14. 절점 '101, 109, 110, 118, 124, 120, 101' 클릭
- 15. Distribution 선택란에서 'One Way' 선택 🖗
- 16. Load Angle(A1) 입력란에 '0' 확인
- 17. No. of Sub Beam 입력란에 '0' 입력
- 18. 절점 '125, 127, 128, 126, 125' 클릭

☞ 장변/단변의 비가 크기 때 문에 1방향으로 하중흐름 을 가정하고 1Way로 입력 합니다. 1방향으로 하중 을 입력하여 해석한 경우 에는 설계에서도 1방향으 로 배근을 해 주어야 합니 다.

그림 3.3 2층 바닥하중 입력

그림 3.4 고층부 바닥하중 입력

지붕층 하중을 입력합니다.

1.

Story를 지정하고 Roof 선택® 2. ♥ Story Name은 수직부재들 Active 버튼 클릭 3. 기준으로 부여된다. 예를 Close 버튼 클릭 들어 '3F'이면 3층의 기둥 4. 과 4층 바닥을 의미합니다. Load Type 선택란에서 '지붕' 선택 5. Distribution 선택란에서 'Two Way'선택 6. 7. No. of Sub Beams 입력란에 '1' 입력 8. Sub-Beam Angle(A2) 입력란에 '90' 확인 9. Copy Floor Load에 '√' 표시 삭제 (Check off) 10. 절점 '424, 440, 442, 438, 437, 425, 424' 클릭 11. 절점 '425, 433, 434, 442, 448, 444, 425' 클릭 12. Distribution 선택란에서 'One Way' 선택 13. Load Angle(A1) 입력란에 '0' 확인 14. No. of Sub Beams 입력란에 '0' 입력 15. 절점 '449, 451, 452, 450, 449' 클릭 16. [Active All 클릭 Node Number, 🔂 Hidden 클릭(Toggle off) 17. 💻 Display를 클릭하여, Load탭의 Floor Load Name에 '√'표시 9 18. ■ Display의 Roor Load 는 Load Case에 제한을 받 OK. 버튼 클릭 후, 하중 입력 상태 확인? 19. 버튼 클릭 20. Display 클릭하여 Reset All 버튼 클릭 0K 21.

陆 Activate by Identifying 클릭

 하중입력 상태 확인을 위 해서는 Dynamic View, Display, Active Identity등 의 기능을 이용하면 편리 합니다.

지 않습니다.

G

그림 3.5 Floor Load Name

MIDAS

3-4 풍하중 입력

풍하중은 "건축구조기준(KBC2009)/국토해양부"에 따라 midas Gen의 풍하중 자동연산 입력기능을 이용하여 입력합니다.

풍하중을 입력하기 전에 자동산정된 풍압면의 폭과 하중의 작용점이 적절한지 판단 합니다.

- 1. Main Menu에서 Structure > Building > Control Data > Story 클릭
- Wind탭(그림 3.6 ●)에서 각 방향의 풍압면적 계산에 적용될 폭과 하중의 작용점을 확인 (그림 3.6 참조)
- 3. Story Data 대화상자의 Close 버튼 클릭

Gro O	ound Level	n					
	Name	Floor Width X-Dir(m)	Floor Width Y-Dir(m)	Floor Center Xc(m)	Floor Center Yc(m)	Eccentricity X-Dir(m)	Eccentricity Y-Dir(m)
•	Roof	36.00	29.10	18.00	14.55	5.40	4.37
	12F	36.00	29.10	18.00	14.55	5.40	4.37
	11F	36.00	29.10	18.00	14.55	5.40	4.37
	10F	36.00	29.10	18.00	14.55	5.40	4.37
	9F	36.00	29.10	18.00	14.55	5.40	4.37
	8F	36.00	29.10	18.00	14.55	5.40	4.37
	7F	36.00	29.10	18.00	14.55	5.40	4.37
	6F	36.00	29.10	18.00	14.55	5.40	4.37
	5F	36.00	29.10	18.00	14.55	5.40	4.37
	4F	36.00	29.10	18.00	14.55	5.40	4.37
	3F	36.00	29.10	18.00	14.55	5.40	4.37
	2F	36.00	29.10	18.00	14.55	5.40	4.37
	1E	36.00	27.60	18 00	13.80	5 40	4 14

그림 3.6 Story Data

- 1. Main Menu에서 Load > Lateral > Wind Loads 선택
- 2. Wind Loads 대화상자의 Add 버튼 클릭
- 3. Load Case Name 선택란에서 'WX'선택
- 4. Wind Load Code 선택란에서 'KBC(2009)' 확인*
- 5. Wind Load Parameters의 Exposure Category에서 'B' 확인
- 6. Basic Wind Speed 입력란에 '30' 확인
- 7. Importance Factor 입력란에 '1' 확인
- 8. Topographic Factor at Building Ground Level Kzt 입력란에 '1' 확인 @
- 9. Gust Factor 오른쪽 버튼 클릭
- 10. Calculate 버튼 클릭
- 11. OK 버튼 클릭
- 12. Wind Load Direction Factor (Scale Factor)에서 X-Dir 입력란에 '1'확인,

Y-Dir 입력란에 '0'입력

- 13. Apply 버튼 클릭
- 14. Wind Load Profile,.. 버튼 클릭
- 15. 그림 3.7 좌측하단의 Scroll Bar를 조정하여 GL의 Story Shear 1766.5 kN

(그림 3.7 🛈)확인

16. Close 버튼 클릭

그림 3.7 Wind Load Profile (WX)

- Add/Modify Wind Load
 Code 대화상자의
 Wind Load Profile...
 버튼을 클릭하면 구조물
 에 가해지는 풍하중정보
 를 도표와 그래프로 확인
 할 수 있습니다.(그림 3.7)
- 본 예제에서는 지형에 따
 른 풍속할증은 불필요한
 것으로 가정합니다.

♥ Wind Load Direction Factor 에서 X-Dir과 Y-Dir에 모 두 값을 입력하면 2방향으 로 동시에 하중이 가해지 므로 주의해야 하겠습니 다. 이 기능은 하중방향과 직각방향으로 동시에 작 용시키고자 하는 경우에 사용됩니다.

풍하중 또는 등가정적 지진하중 자동연산기능에서, 적용할 하중기준과 변수를 입력 하면 각 층별로 계산된 하중을 Table과 Graph의 형태로 확인할 수 있습니다. 또한, 버튼(그림 3.7 ④)을 클릭하여 자동계산된 내역을 Text File의 형태로 출력할 수도 있습니다.

- 1. Load Case Name 선택란에서 'WY'선택
- 2. Wind Load Direction Factor(Scale Factor)에서 X-Dir 입력란에 '0'입력, Y-Dir 입력란에 '1'입력
- 3. Apply 버튼 클릭
- 4. Wind Load Profile... 버튼 클릭
- 5. 그림 3.8 좌측 하단의 Scroll Bar를 조정하여 GL의 Story Shear

2282.2kN 확인(그림 3.8 ❶참조)

- 6. Close 버튼 클릭
- 7. Add/Modify Wind Load Specification 대화상자에서 [Cancel] 버튼 클릭
- 8. Wind Loads 대화상자의 Close 버튼 클릭 *

그림 3.8 Wind Load Profile (WY)

 ☞ 모델에 포함되지 않은 옥 탑이나 바람막이 벽 등에 의해 추가되는 풍하중은 Additional Wind Loads 에 서 직접 입력합니다.

그림 3.9 풍하중 입력

3-5 Building Control Data

건축구조기준(KBC 2009)에 따른 내진설계를 위해서 반드시 체크해야 하는 항목 중 전도모멘트(Overturning Moment), 안정계수(Stability Coefficient), 강성 비정형 평가(Stiffness Irregularity Check)는 Story Shear를 사용합니다. 그러므로 Building Control Data의 Story Shear Force Ratio 옵션이 체크되어 있는지 확인합니다.

- 1. Main Menu에서 Structure > Building > Control Data 클릭
- 2. Story Shear Force Ratio에 '√' 표시 확인 🖗
- 3. <u>O</u>K 버튼 클릭

uilding Control	x
Use Groun	d Level
Ground Le	evel : 0 m
🗸 Consider N	Mass below Ground Level for Eigenvalue Analysis
📝 Story Shea	ar Force Ratio
🔽 Consider V	Wind and Seismic Loads for Flexible Floors
Eccentric	sity Ratio
Story Cente	er (Mass/Load)
Use Ma	ss 🔘 Use Axial Force 💮 Use Shear Force
Load Case	; DL 🚽
Scale Fact	
Loa	d Case Scale Add
	Modify
	Delete
Story Stiffn	ess Center
X-Direction	nal Load Case ; DL 👻
Y-Direction	nal Load Case ; DL 🚽 📖
🔲 Story Resp	onse of Time History Results
⊚ Story Ce	anter
Story Av	rerage
Story	Drift by Maximum of Vertical Elements
	OK <u>C</u> ancel

그림 3.10 Story Shear Force Ratio 옵션 체크

 midas Gen 2015에서 'Story Shear Force Ratio'옵션은 기본값으로 체크되어 고 려하고 있습니다.

3-6 내진설계범주 판정 및 1차 해석법 결정

지진지역과 지반종류가 결정되면 단주기 및 1초주기 설계스펙트럼 가속도(Sds,Sd1) 가 자동으로 계산됩니다. 그리고 내진등급을 선택하면 내진설계범주가 자동 판정 됩니다.

결정되면 단 주기 및 1초 주기 설계 스펙트럼 가속 도 (Sds, Sd1)가 자동으로 계산됩니다. (그림 3.11참조)

지진지역과 지반종류가

G Sds와 Sd1의 내진 설계범
 주 중에서 불리한 값을 선
 택합니다.

- 1. Main Menu에서 Load > Lateral > Seismic Loads 선택
- 2. <u>A</u>dd 버튼 클릭
- 3. Seismic Load Code 선택란에서 KBC(2009) 확인
- 4. Seismic Load Parameters의 Design Spectral Response Acceleration에서 Seismic Zone선택란에 '1' 확인
- 5. Zone Factor 선태란에서 '0.22' 확인
- 6. Site Class선택란에서 'Sd' 확인 ♀
- 7. Seis. Use Group 선택란에서 'I'확인 Importance(Ie) 선택란에서 '1.2' 확인
- 8. Seis. Design Category 에서 'Sds(C), Sd1(D) → D' 확인 후
- 9. Cancel 버튼 클릭

내진설계범주가 'D'이므로 구조물의 비정형성을 판정하여 해석법을 결정해야 합니 다. 본 구조물을 비정형으로 가정하고 응답스펙트럼 해석에 의한 비정형 평가를 한 후 에 최종 해석법을 결정합니다. 본 따라하기에서는 Chapter 1에서 응답스펙트럼 해석 에 의한 설계절차를 설명하고 Chapter 2에서 등가정적 해석을 수행한 경우의 설계절 차에 대하여 설명합니다.

➢ KBC2009-0306.4.5.3 -

- 내진설계범주'D'에 대한 해석법

: 내진설계범주'D'에 해당하는 구조물의 해석에는 <표 0306.4.6>에 지정된 해석방 법 또는 그보다 정밀한 해석방법을 사용하여야 한다. 이 경우에 구조물이 <표 0306. 4.4>의 H-1 혹은 H-4에 해당하는 평면 비정형성이 없거나 <표 0306.4.5>의 V-1, V-4 혹은 V-5에 해당하는 수직 비정형성이 없는 경우 정형으로 볼 수 있다.

A

dd/Modify Seismic Load Specification								
Load Case Name : EX Seismic Load Code : KBC(2009) -								
Description :								
Seismic Load Parameters Design Spectral Response Acceleration Seismic Zone 1 Fa 1.36000 Zone Factor (S) 0.22 Fv 1.96000 Site Class Sd Sds 0.49867 g Period Coef, (Cu) 1.41253 Sd1 0.28747 g								
Seis, Use Group - Importance 1,2 -								
Seis, Design Category : Sds C Sd1 D => D								
Structural Parameters								
X-Dir, Y-Dir,								
○ Analytical Period : 0 0								
Approximate Period : U U U								
Response Modification Factor (R)								
Seismic Load Direction Factor (Scale Factor)								
X-Direction : 1 Y-Direction : 1								
Accidental Eccentricity								
X-Direction (Ex) : 💿 Positive 🔘 Negative 🔘 None								
Y-Direction (Ey) : 💿 Positive 💿 Negative 💿 None								
Torsional Amplification Accidental Eccentricity								
Additional Seismic Loads (Unit:kN,m)								
Story AddX AddY AddRZ 📥 Add								
Seismic Load Profile) OK Cancel Apply								

그림 3.11 내진 설계 범주 결정

3-7 응답스펙트럼 해석조건 입력

건축구조설계기준(KBC 2009)에 의한 설계용 응답스펙트럼을 설정합니다. 구조물에 작용하는 지진하중을 응답스펙트럼 해석을 통해 고려하고자 할 때에는 먼저 고유치 해석에 필요한 질량데이터와 고유치 해석조건 및 응답스펙트럼이 입력되어야 합니다.

본 예제에서는 구조물에 입력한 고정하중을 통해 질량데이터를 자동생성하고, 기준에 의한 응답스펙트럼 데이터를 자동 계산하여 구조해석에 적용합니다.

먼저 구조물의 자중과 고정하중을 이용하여 질량데이터를 자동생성합니다.

- 1. Main Menu에서 Structure > Type > Structure Type 선택
- 2. Convert Self-weight into Masses에 '√'표시 후 'Convert to X, Y' 선택
- 3. OK 버튼 클릭
- 4. Main Menu에서 Load > Structure Loads/Masses > Load to Masses 선택
- 5. Mass Direction 에서 'X, Y' 선택
- 6. Load Case 선택란에서 'DL'선택
- 7. Scale .Factor '1.0' 확인 후 Add , OK 버튼 클릭

그림 3.12 질량데이터 자동생성

G

MIDAS

(그림 3.14의 ① 참조)

3. 하중입력

다음은 응답스펙트럼 해석 조건을 설정합니다.

- 1. Main Menu에서 Load > Load Type > Dynamic Load > Response Spectrum Data > RS Load Cases 선택
- 2. Eigenvalue Analysis Control,.. 버튼 클릭
- 3. Type of Analysis에서 'Eigen Vectors' 선택 확인
- 4. Number of Frequencies입력란에 '15' 입력 후, OK 버튼 클릭

Type of Analysis Eigen Vectors Subspace Iteration Lanczos	Ritz Vectors
Eigen Vectors Number of Frequencies : 15	Sturm Sequence Check
Frequency range of interest Search From : 0 [cps] To : 1600 [cps]	

그림 3.13 고유치해석 조건 설정

각 모드별 해석결과를 조합하는 방법을 지정하고, 하중기준에 의한 설계용 응답 스펙 트럼을 생성합니다.

	1. Response Spectrum Functions 클릭
	2. Response Spectrum Functions 대화상자의 <u>A</u> dd 버튼 클릭
	3. Design Spectrum 버튼 클릭
	4. Design Spectrum 선택란에 'KBC(2009)' 확인
	5. Design Spectral Response Acceleration의 Seismic Zone 선택란에서 '1' 확인
	6. Zone Factor(S) 선택란에서 '0.22'확인 Site Class 선택란에서 'Sd' 확인 ♀
지진지역과 지반종류가	7. Importance Factor (Ie) 선택란에서 '1.2'확인
결정되면 단주기 및 1초	8. Response Modification Coef. (R) 선택란에서 '5.5'선택
주기 설계 스펙트럼 가속	9. OK 버튼클릭
계산됩니다.	

60

그림 3.14 Design Spectrum 자동 생성 대화상자

생성된 설계스펙트럼 데이터를 적용하여 응답스펙트럼 하중조건을 생성합니다. 본 예제에서는 전체좌표계 X축과 Y축 방향을 고려합니다.

1. Add/Modify/Show Response Spectrum Functions 대화상자 ΟK 버튼 클릭 버튼 클릭 Response Spectrum Functions 대화상자의 _____Close 2. Modal Combination Control 우측 버튼 클릭 3. Modal Combination Type에서 'SRSS' 선택 확인 후 OK. 버튼 클릭 4. 5. Load Case Name 입력란에 'RX' 입력 6. Excitation Angle 입력란에 '0' 확인 7. Spectrum Functions의 Function Name(Damping Ratio)에서 KBC2009(0.05)에 '√'표시 8. Accidental Eccentricity에 '✓'표시 ♀ 9. Operations 에서 Add 버튼 클릭 10. Load Case Name 입력란에 'RY' 입력 11. Excitation Angle 입력란에 '90' 입력 12. Operations 에서 Add 버튼 클릭

부재설계 및 비틀림 비정 형을 평가하기 위해서는 응답스펙트럼 해석시 우 발편심 모멘트를 고려해 야 합니다.

MIDAS

그림 3.15 응답스펙트럼 하중조건 입력

KBC2009를 적용한 철근콘크리트 골조와 전단벽을 가진 이중골조 시스템

midas Gen 2015

4. 구조해석 수행

구조해석에 필요한 모델의 기하형상과 Property, 경계조건 그리고 하중까지 모두 입력되었으므로 구조해석을 수행합니다.

1. Main Menu에서 Analysis > Perform > Perform Analysis를 클릭

그림 4.1 구조해석 수행

KBC2009를 적용한 철근콘크리트 골조와 전단벽을 가진 이중골조 시스템

midas Gen 2015

5-1 비정형 평가 - 하중조합

내진설계범주 'D'인 경우에는 평면비정형 1, 4, 5 항목과 수직비정형 1~5 항목을 반드시 평가해야 합니다. 그러나 이 항목들이 모두 정형으로 판정되어도 평면비정 형 2, 3항목도 평가하여 보정계수(Cm : Scale Factor) 산정시 고려해야 합니다. 본 따라하기에서는 프로그램에서 평가 가능한 4가지 항목과 그 외 비정형항목을 평가합니다.

평면비정형 1:비틀림 비정형 평가

비틀림 비정형을 평가하기 위해서 우발편심모멘트를 고려한 응답스펙트럼 하중 조합을 생성합니다. 우발편심모멘트는 [그림 5.1(b)]와 같이 각 방향별로 두 가지를 고려해야 하므로 4가지의 하중조합을 생성합니다.

— ≻ KBC 2009 표-0306.4.4 —

비틀림 비정형 : 어떤 축에 직교하는 구조물의 한 단부에서 우발 편심을 고려한 최 대 층변위가 그 구조물 양단부 층변위평균값의 1.2배보다 클 때 비틀림 비정형인 것 으로 간주한다.

- 1. Main Menu에서 Results > Combination > Load Combination 선택
- 2. Load Combinations에서 General Tab 선택
- 3. Auto Generation,.. 버튼 클릭
- 4. Code Selection에서 "Concrete" 선택
- 5. Design Code에서 'KCI-USD12'확인
- 6. OK 버튼클릭
- 7. Load Combination List의 Name에서 'gLCB1, gLCB2, gLCB3, gLCB4' 확인 🖗

 비틀림비정형 평가시에 응답스펙트럼해석에 의한 우발편심모멘트를 고려하 기 위해 General Tap에서 그림 5.1(b)의 •과 같이 4 가지 하중조합이 자동 생 성 됩니다.

(a) 각 방향별 우발편심모멘트

(b) 우발편심모멘트를 고려한 응답스펙트럼 하중조합 생성

그림 5.1 비틀림 비정형을 평가하기 위한 하중조합 생성

 ♀ Context Menu 의 'Select Irregularity Ends'에서 User Define으로 사용자가 절점 을 지정할 수 있습니다. 미리 생성해 두었던 우발편심모멘트를 고려한 응답스펙트럼 하중조합을 이용하여 비틀림 비정형을 평가합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Torsional Irregularity Check 선택
- Load Case/Combination 대화상자에서 gLCB1, gLCB2, gLCB3, gLCB4 '√' 표시
 후 OK 버튼 클릭

비틀림 비정형 평가 결과 Maximum Story Drift값이 1.2×Story Drift보다 크기 때문에 본 예제는 비틀림 비정형구조물에 해당합니다.

C	Result-[Torsional Irregularity Check]											
					Average Value	e of Extreme Points	Max	imum Value				
	Load Case	Story	(m)	(m)	Story Drift (m)	1.2*Story Drift (m)	Node	Story Drift (m)	Remark			
	gLCB1	12F	46.00	4.00	0.0019	0.0022	404	0.0023	Irregular			
	gLCB1	11F	42.00	4.00	0.0020	0.0025	368	0.0026	Irregular			
	gLCB1	10F	38.00	4.00	0.0022	0.0027	332	0.0029	Irregular			
	gLCB1	9F	34.00	4.00	0.0023	0.0028	296	0.0031	Irregular			
	gLCB1	8F	30.00	4.00	0.0025	0.0030	260	0.0033	Irregular			
	gLCB1	7F	26.00	4.00	0.0025	0.0030	224	0.0035	Irregular			
	gLCB1	6F	22.00	4.00	0.0026	0.0031	188	0.0036	Irregular			
	gLCB1	5F	18.00	4.00	0.0025	0.0030	152	0.0036	Irregular	-		
	gLCB1	4F	14.00	4.00	0.0025	0.0030	116	0.0036	Irregular			
	gLCB1	3F	9.50	4.50	0.0026	0.0031	80	0.0038	Irregular			
	gLCB1	2F	5.00	4.50	0.0023	0.0027	17	0.0033	Irregular			
	gLCB1	1F	0.00	5.00	0.0015	0.0018	49	0.0022	Irregular			
	gLCB2	12F	46.00	4.00	0.0018	0.0022	404	0.0019	Regular			
	gLCB2	11F	42.00	4.00	0.0020	0.0024	352	0.0020	Regular			
	gLCB2	10F	38.00	4.00	0.0022	0.0026	336	0.0022	Regular			
	gLCB2	9F	34.00	4.00	0.0023	0.0027	280	0.0023	Regular			
	gLCB2	8F	30.00	4.00	0.0024	0.0029	264	0.0025	Regular			
	gLCB2	7F	26.00	4.00	0.0025	0.0030	228	0.0026	Regular			
	gLCB2	6F	22.00	4.00	0.0025	0.0030	192	0.0027	Regular			
	gLCB2	5F	18.00	4.00	0.0025	0.0030	156	0.0027	Regular			
	gLCB2	4F	14.00	4.00	0.0025	0.0030	120	0.0027	Regular			
	gLCB2	3F	9.50	4.50	0.0026	0.0032	84	0.0030	Regular			
	gLCB2	2F	5.00	4.50	0.0023	0.0028	21	0.0027	Regular			
	gLCB2	1F	0.00	5.00	0.0015	0.0018	52	0.0017	Regular			
	gLCB3	12F	46.00	4.00	0.0025	0.0030	412	0.0028	Regular			
	gLCB3	11F	42.00	4.00	0.0028	0.0034	376	0.0031	Regular			
	gLCB3	10F	38.00	4.00	0.0031	0.0037	340	0.0033	Regular			
	gLCB3	9F	34.00	4.00	0.0032	0.0039	296	0.0035	Regular			
	gLCB3	8F	30.00	4.00	0.0034	0.0041	260	0.0037	Regular			
	gLCB3	7F	26.00	4.00	0.0036	0.0043	224	0.0038	Regular			
	gLCB3	6F	22.00	4.00	0.0037	0.0044	188	0.0039	Regular	-		
4 b	\ Torsio	nal Irreg	ularity /			•			۱.			

그림 5.2 각 방향별 비틀림 비정형 평가결과 Table

수직비정형 1 : 강성 비정형 평가

— ≻ KBC 2009 표-0306.4.5 –

강성 비정형 : 어떤 층의 횡강성이 인접한 상부층 횡강성의 70% 미만이거나 상부 3 개층 평균 강성의 80% 미만인 연층이 존재하는 경우 강성분포의 비정형이 있는 것 으로 간주한다. 단, 임의의 층의 층간변위각에 대한 인접한 상부층의 층간변위각의 비가 130% 이하이면 예외로 한다.(0306.4.4.2)

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Stiffness Irregularity Check(Soft Story) 선택
- Load Case/Load Combination 에서 RX(RS), RY(RS)에 '√' 표시 후
 OK 버튼 클릭
- 3. Select Calculation Method의 Story Drift Method에서 'Drift at the Center of Mass' 확인
- 4. Story Stiffness Method 에서 '1/Story Drift Ratio' 확인 후 OK 버튼 클릭
- 5. 'Stiffness Irregularity(X) Tab', 'Stiffness Irregularity(Y) Tab' 확인

층간변위(Story Drift)와 층강성(Story Stiffness)을 계산하는 방법을 지정합니다.

본 예제에서는 질량중심에서의 층간변위와 층간변위각(Story Drift Ratio)의 역수로 계산된 층강성 계산방법을 선택합니다.

Records Activation Dialog	Select Calculation Method
Loadcase/Combination DL(ST) LL(ST) WX(ST) EX(ST) EX(ST) EY(ST) EY(ST) RX(RS) RX(ES) RX(ES) RX(ES) gLCB1(CB) gLCB2(CB)	Country Code : Story Drift Method Drift at the Center of Mass Max, Drift of Outer Extreme Points Max, Drift of All Vertical Elements Story Stiffness Method 1 / Story Drift Ratio Story Shear / Story Drift
OK Cancel	OK Cancel

그림 5.3 Story Drift와 Story Stiffness 계산 방법 지정

MIDAS

강성비정형 평가 결과 Story Stiffness Ratio가 1.0보다 크기 때문에 본 예제는 강성비정 형이 아닙니다. 만약 Story Stiffness Ratio가 1.0보다 작더라도 Story Drift Angle Ratio가 1.3보다 작으므로 강성비정형에 해당하지 않습니다.

- Story Stiffness Ratio : Max{(Story Stiffness / 0.7Ku1), (Story Stiffness / 0.8Ku123)}
- Story Drift Angle Ratio : Story Drift / 상부층의 Story Drift

	Result-[Stiffness Irregularity Check] 👝 🖸 Σ												
			Level	Story Height	Story Drift	Story Shear	Story	Upper Sto	ry Stiffness	Story	Story Drift Angle		L.
	Load Case	Story	(m)	(m)	(m)	Force (kN)	Stiffness	0.7Ku1	0.8Ku123	Stiffness Ratio	Ratio	Remark	
	RX(RS)	12F	46.00	4.00	0.0016	968.76	2467.22	0.00	0.00	0.000	0.000	Regular	
	RX(RS)	11F	42.00	4.00	0.0018	1675.19	2241.98	1727.05	0.00	1.298	1.100	Regular	
	RX(RS)	10F	38.00	4.00	0.0019	2212.59	2067.52	1569.39	0.00	1.317	1.084	Regular	
	RX(RS)	9F	34.00	4.00	0.0020	2646.09	1980.29	1447.26	1807.13	1.096	1.044	Regular	
	RX(RS)	8F	30.00	4.00	0.0021	3016.00	1891.98	1386.21	1677.28	1.128	1.047	Regular	
	RX(RS)	7F	26.00	4.00	0.0022	3339.48	1853.38	1324.38	1583.94	1.170	1.021	Regular	
	RX(RS)	6F	22.00	4.00	0.0022	3636.95	1837.54	1297.37	1526.84	1.203	1.009	Regular	
	RX(RS)	5F	18.00	4.00	0.0021	3924.06	1864.87	1286.28	1488.77	1.253	0.985	Regular	
	RX(RS)	4F	14.00	4.00	0.0021	4196.88	1913.46	1305.41	1481.55	1.292	0.975	Regular	
	RX(RS)	3F	9.50	4.50	0.0022	4448.58	2063.18	1339.42	1497.57	1.378	0.927	Regular	
	RX(RS)	2F	5.00	4.50	0.0019	4661.12	2405.03	1444.23	1557.74	1.544	0.858	Regular	
	RX(RS)	1F	0.00	5.00	0.0012	4774.37	4094.48	1683.52	1701.78	2.406	0.587	Regular	-
∢	\Stiffne	ss Irregi	ularity(X)	Stiffnes	s Irregularity((Y) /	•			m			

(a) Stiffness Irregularity(X) Tab

G	Result-[Stiffness Irregularity Check]											_ 0	x
			Loval	Stopy Height	Story Drift (m)	Story Shear Force (kN)	Story Stiffness	Upper Story Stiffness		Story	Shany Drift Anala		11
	Load Case	Story	(m)	(m)				0.7Ku1	0.8Ku123	Stiffness Ratio	Ratio	Remark	
	RY(RS)	12F	46.00	4.00	0.0021	774.64	1866.94	0.00	0.00	0.000	0.000	Regular	
	RY(RS)	11F	42.00	4.00	0.0022	1245.73	1803.24	1306.86	0.00	1.380	1.035	Regular	
	RY(RS)	10F	38.00	4.00	0.0023	1513.06	1769.53	1262.27	0.00	1.402	1.019	Regular	
	RY(RS)	9F	34.00	4.00	0.0023	1679.33	1772.70	1238.67	1450.59	1.222	0.998	Regular	
	RY(RS)	8F	30.00	4.00	0.0022	1818.68	1783.86	1240.89	1425.46	1.251	0.994	Regular	Ы
	RY(RS)	7F	26.00	4.00	0.0022	1965.19	1830.16	1248.70	1420.29	1.289	0.975	Regular	
	RY(RS)	6F	22.00	4.00	0.0021	2138.95	1904.17	1281.11	1436.46	1.326	0.961	Regular	
	RY(RS)	5F	18.00	4.00	0.0019	2339.55	2062.60	1332.92	1471.52	1.402	0.923	Regular	E
	RY(RS)	4F	14.00	4.00	0.0018	2548.51	2256.35	1443.82	1545.85	1.460	0.914	Regular	
	RY(RS)	3F	9.50	4.50	0.0017	2757.63	2620.82	1579.45	1659.50	1.579	0.861	Regular	
	RY(RS)	2F	5.00	4.50	0.0014	2951.55	3326.22	1834.57	1850.61	1.797	0.788	Regular	
	RY(RS)	1F	0.00	5.00	0.0008	3063.46	6591.99	2328.36	2187.57	2.831	0.505	Regular	-
▲ ►	∖ Stiffn	ess Irregu	ılarity(X)	∖Stiffness	s Irregularit	y(Y)/	•	·					

(b) Stiffness Irregularity(Y) Tab

그림 5.4 강성비정형 평가 결과 Table

수직비정형 2: 중량 비정형 평가

→ KBC 2009 ±-0306.4.5 -

중량비정형: 어떤 층의 유효중량이 인접층 유효중량의 150%를 초과할 때 중량 분 포의 비정형으로 간주한다. 단, 임의의 층의 층간변위각에 대한 인접한 상부층의 층 간변위각의 비가 130% 이하인 경우와 지붕층이 하부층보다 가벼운 경우이면 예외 로 한다. (0306.4.4.2)

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Weight Irregularity Check 선택
- Load Case/Load Combination 에서 RX(RS), RY(RS)에 '√' 표시 후
 OK 버튼 클릭
- Select Calculation Method의 Story Drift Method 에서 'Drift at the Center of Mass' 선택 후 OK 버튼 클릭
- 4. 'Weight Irregularity(X) Tab', 'Weight Irregularity(Y) Tab' 확인

중량비정형 평가 결과 Story Weight Ratio가 1.0보다 작기 때문에 본 예제는 중량비정 형이 아닙니다. 만약 Story Weight Ratio가 1.0보다 크더라도 Story Drift Angle Ratio가 1.3보다 작은 경우는 중량비정형에 해당하지 않습니다.

- Story Weight Ratio : Max{(Story Weight / 1.5M(U)), (Story Weight / 1.5M(L))}

- Story Drift Angle Ratio : Story Drift / 상부층의 Story Drift

그림 5.4 중량비정형 평가 결과 Table

수직비정형 5 : 강도 비정형 평가

→ KBC 2009 ±-0306.4.5 -

강도 비정형 : 임의 층의 횡강도가 직상층 횡강도의 80% 미만인 약층이 존재하는 경우 강도의 불연속에 의한 비정형이 존재하는 것으로 간주한다. 각층의 횡강도는 층 전단력을 부담하는 내진요소들의 저항 방향 강도의 합을 말한다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Capacity Irregularity Check(Weak Story) 선택
- 2. 'Capacity Irregularity Tab' 확인

강도비정형 평가 결과 Story Shear Strength Ratio가 0.8보다 크므로 본 예제는 강도비정 형이 아닙니다.

-Story Shear Strength Ratio : Story Shear Strength / Upper Story Shear Strength

Angle은 요소의 강도를 계산하는 기준이 되는 방향이며 일반적으로 Angle 1을 하중이 작용하는 방향으로 지정하면 입력된 하중과 층전단강도가 일치하게 되어서 그 때의 각 층별 강도를 확인할 수 있습니다.

Result-[Capacity Irregularity Check]												_ 0 X			
	Story	Level (m)	Story Height (m)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark2	Î	
	Angle = 0 [l	Deg]													
	Input angle and press 'Apply' button to change angle.			0.00	Apply										
	12F	46.00	4.00	0.00	8786.5611	0.0000	0.0000	Regular	90.00	8552.2528	0.0000	0.0000	Regular		
	11F	42.00	4.00	0.00	8786.5611	8786.5611	1.0000	Regular	90.00	8552.2528	8552.2528	1.0000	Regular		
	10F	38.00	4.00	0.00	8786.5611	8786.5611	1.0000	Regular	90.00	8552.2528	8552.2528	1.0000	Regular	=	
	9F	34.00	4.00	0.00	10218.4451	8786.5611	1.1630	Regular	90.00	9984.1368	8552.2528	1.1674	Regular		
	8F	30.00	4.00	0.00	10218.4451	10218.4451	1.0000	Regular	90.00	9984.1368	9984.1368	1.0000	Regular		
	7F	26.00	4.00	0.00	10478.7876	10218.4451	1.0255	Regular	90.00	10244.4793	9984.1368	1.0261	Regular		
	6F	22.00	4.00	0.00	10478.7876	10478.7876	1.0000	Regular	90.00	10244.4793	10244.4793	1.0000	Regular		
	5F	18.00	4.00	0.00	12821.8706	10478.7876	1.2236	Regular	90.00	12587.5623	10244.4793	1.2287	Regular		
	4F	14.00	4.00	0.00	12821.8706	12821.8706	1.0000	Regular	90.00	12587.5623	12587.5623	1.0000	Regular		
	3F	9.50	4.50	0.00	15392.7533	12821.8706	1.2005	Regular	90.00	15158.4450	12587.5623	1.2042	Regular		
	2F	5.00	4.50	0.00	15392.7533	15392.7533	1.0000	Regular	90.00	15158.4450	15158.4450	1.0000	Regular		
	1F	0.00	5.00	0.00	16434.1235	15392.7533	1.0677	Regular	90.00	16980.8428	15158.4450	1.1202	Regular	-	
•)	Capacity Irregularity										III			•	

그림 5.4 강도비정형 평가 결과 Table
그 외 비정형 평가

midas Gen에서는 앞서 설명한 프로그램으로 판단 가능한 4가지 비정형평가를 자동으 로 수행합니다. 그 외의 6가지 비정형평가 항목에 대해서는 프로그램에서 자동으로 판단하지 않으므로 설계자가 직접 평가해야 하겠습니다.

평면비정형 2 - 요철형 평면

- 내용 : 돌출한 부분의 치수가 해당하는 방향의 평면치수의 15%를 초과하면 요철형 평면을 갖는 것으로 간주한다.
- 평가 : 본 예제는 직사각형 정형적인 평면이고 돌출한 부분이 없기 때문에 요철형 평면에 해당하지 않습니다 (Regular).

평면비정형 3 - 격막의 불연속

- 내용: 격막에서 잘려나간 부분이나 뚫린 부분이 전체 격막면적의 50%를 초과하거나 인접한 층간 격막 강성의 변화가 50%를 초과하는 급격한 불연속이나 강성의 변화가 있는 격막.
- 평가 : 본 예제는 격막에서 잘려나간 부분이나 뚫린 부분이 없고, 전층 격막 강성의 변화가 없기 때문에 격막의 불연속에 해당하지 않습니다 (Regular).

평면비정형 4 - 면외 어긋남

- 내용 : 수직부재의 면외 어긋남 등과 같이 횡력전달 경로에 있어서의 불연속성.
- 평가: 그림 5.7과 같이 전단벽의 면외 어긋남으로 횡하중 전달 경로가 불연속이 되었으므로 비정형에 해당됩니다 (Irregular).

평면비정형 5 - 비평행 시스템

- 내용 : 횡력저항 수직요소가 전체 횡력저항 시스템에 직교하는 주축에 평행하지 않거나 대칭이 아닌 경우.
- 평가 : 횡력저항 수직요소가 주축에 평행하지만, 평면이 대칭이 아니기 때문에 비평행 시스템에 해당됩니다 (Irregular).

수직비정형 3 - 기하학적 비정형

- 내용 : 횡력 저항시스템의 수평치수가 인접층 치수의 130%를 초과할 경우 기하학적 비정형이 존재하는 것으로 간주한다.
- 평가:본 예제는 직사각형 정형적인 평면이고 수직적인 변화가 없기 때문에 기하학 적 비정형에 해당하지 않습니다 (Regular).

수직비정형 4 – 면내 어긋남(횡력저항 수직 저항요소의 비정형)

- 내용: 횡력 저항요소의 면내 어긋남이 그 요소의 길이보다 크거나, 인접한 하부층
 저항요소에 강성감소가 일어나는 경우 수직 저항요소의 면내 불연속에 의한
 비정형 있는 것으로 간주한다.
- 평가 : 그림 5.7와 같이 전단벽이 최하부층까지 연속되어 있지 않으므로 비정형에 해 당됩니다 (Irregular).

MIDAS

그림 5.7 면내 및 면외 어긋난 부분

번호	유 형	판 정	비 고
H-1	비틀림 비정형	Irregular	등가정적 해석시 비틀림 증폭계수 적용
Н-2	요철형 평면	Regular	-
Н-3	격막의 불연속	Regular	-
H-4	면외 어긋남	Irregular	횡력저항 불연속 수직부재의 특별하중조합적용
P -5	비평행 시스템	Irregular	비정형 여부에 관계없이, 내진설계범주 D이기 때문에 Orthogonal Effect 고려
V-1	강성 비정형	Regular	-
V-2	중량 비정형	Regular	-
V-3	기하학적 비정형	Regular	-
V-4	면내 어긋남	Irregular	횡력저항 불연속 수직부재의 특별하중조합적용
V-5	강도 비정형	Regular	

표 5.1 비정형 평가 정리

5-2 해석법 결정

본 구조물은 내진설계범주가 'D'이고 5층 이상의 비틀림 비정형구조물이므로 동적해 석법으로 구조물을 해석해야 합니다(KBC 2009-표 0306.4.6 참조).

구조물의 형태	내진설계를 위한 해석방법
1. 3층 이하의 경량골조 구조와 각 층에서 유연한 격막을 갖는 2층 이하인 기타 구조로서 내진 등 급 Ⅱ의 구조물	등가정적 해석법 동적 해석법
2. 상기 1항 이외의 높이 70m 미만의 정형 구조물	등가정적 해석법 동적 해석법
3. <표 0306.4.5>에서 유형 1,2 혹은 3의 수직비정 형성을 가지거나 <표 0306.4.4>의 유형1의 비정 형성을 가지면서 높이가 5층 또는 20m를 초과하 는 구조물 또는 높이가 70m를 초과하는 정형 구 조물	동적 해석법
4. 평면 및 수직 비정형성을 가지는 기타 구조물	동적 해석법

<표 0306.4.6> 내진설계범주 'D'에 대한 해석법

5-3 고유치 해석결과 검토

- 1. Main Menu에서 Results > Tables > Results Tables > Vibration Mode Shape 선택
- 2. Records Activation Dialog에서 Cancel 클릭 후 테이블에서 X,Y 방향

 주기 확인

-															
						Resu	ilt-[Eigenval	ue Mode]						_ 0	X
	Node	Mode	u	x	u	Y	u	z	R	x	R	ý	R	z	Â
						EI	GENVAL	UE ANA	LYSIS						
		Mode		Frequ	Jency		Per	iod	Toler	anca					
		No	(rad/	(sec)	(cycle	/sec)	(se	c)	TOIGI	ance					
		1		3.9906		0.6351		1.5745	0.	0000e+000					
		2		5.0022		0.7961		1.2561	0.	0000e+000					
		3		5.7066		0.9082		1.1010	0.	0000e+000					E
		4		12.6989		2.0211		0.4948	1	4646e-108					
		5		18.7686		2.9871		0.3348	1.	.0604e-094					
		6		20.3946		3.2459		0.3081	8	2915e-093					-
		7		23.0484		3.6683		0.2726	2	1320e-089					-
		8		34.5077		5.4921		0.1821	1.	7686e-077					
		9		38.2019		6.0800		0.1645	1	1/61e-0/3					-
		10		45.2203		7.1970		0.1389	1.	.6644e-067					- 1
		11		46.4284		7.3893		0.1353	1.	.3056e-068					
		12		58.6146		9.3288		0.1072	6	.0629e-063					- 1
		13		60.6727		9.6564		0.1036	4	.0439e-061					- 1
		14		/1.4/03		11.3/49		0.0879	2	.3207e-057					- 1
		15		72.9080		11.6037		0.0862	3	.6634e-056					
		Made	TDA	N.M.	TDA	MODA		HON MASS	S PRINTOUT		DOT			11.7	
		No	TRA	N-A	TRA	N-Y	TRA MACC/R()	N-Z	RUI	N-A	RUI	N-Y	RUI	N-Z	- 1
		1	MASS(%)	5um(%)	MASS(%)	22 7100	MASS(%)	Sum(%)	MASS(%)	Sum(%)	MASS(%)	Sum(%)	MASS(%)	Sum(%)	- 1
		2	4.0060	4 7457	34,9034	67 5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	21 7002	72 7105	- 1
		2	4.0003	74 2560	0.6762	69 1095	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4 0296	77 7202	- 1
		4	0 1908	74 4468	3 3865	71 5850	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	8.0761	85,8153	-
			14 2554	88 7022	1.0765	72 6615	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	85,8162	
		6	0.5358	89 2381	13 8390	86 5005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4 2142	90.0303	-
		7	0.1234	89.3615	1.8393	88.3398	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.6880	92,7184	1
		8	0.0203	89.3818	0.2443	88 5840	0.0000	0.0000	0.0000	0 0000	0.0000	0.0000	2 1275	94 8459	
		9	4.8772	94,2589	0.1376	88,7216	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0186	94.8645	
		10	0.1021	94.3611	5.6238	94.3454	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5839	95.4484	
	1	11	0.0232	94.3843	0.0246	94.3700	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.4489	96.8973	1
	1	12	0.0148	94.3991	0.1473	94.5173	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.7595	97.6568	1
		13	2.5647	96.9638	0.0498	94.5671	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	97.6577	
		14	0.0111	96.9749	0.0455	94.6126	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5351	98.1928	-
4 1	\Eige	nvalue	Mode (Partici	pation Vec	tor Mod	1				III			Þ	

그림 5.9 Vibration Mode Shape

5-4 응답스펙트럼 해석결과 검토

본 따라하기는 동적 해석이 요구되기 때문에 먼저 응답스펙트럼 해석결과를 검토하 고 참고로 Chapter 2에서 등가정적 해석을 한 경우의 검토 절차도 따라해 보겠습니다.

보정계수(Cm : Modification Factor) 산정

응답스펙트럼 해석을 통해서 구한 구조물의 밑면전단력을 등가정적 해석의 밑면전단 력과 비교하여, 그 차이를 보정하기 위한 보정계수를 산정합니다.

등가정적 해석법에서의 밑면전단력은 midas Gen의 등가정적 지진하중 자동연산 기능 을 이용하여 산정합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Story Shear (Response Spectrum Analysis) 선택
- 2. Spectrum Load Cases에서 RX(RS),RY(RS)에 '√'표시후 OK 버튼 클릭
- 3. RX 조건에서 밑면전단력 '4774.4kN'과 RY조건에서 '3063.5 kN' 확인

						Result-[Stor	/ Shear(Respo	nse Spectrum	Analysis)]					. 0	
				1	-			Shear	Force						
		Level		inertia	Force	Spring R	leactions	Without	t Spring	With	Spring	Eccentricity	Story Force	Eccentric	
	Story	(m)	Spectrum	х	Y	х	Y	х	Y	х	Y	(m)	(kN)	(kN-m)	
				(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)			(((((((((((((((((((((((((((((((((((((((
•	Roof	50.0000	RX(RS)	9.6876e+002	2.4239e+002	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.4550e+000	9.6876e+002	1.4095e+003	3
	12F	46.0000	RX(RS)	7.2570e+002	1.6742e+002	0.0000e+000	0.0000e+000	9.6876e+002	2.4239e+002	9.6876e+002	2.4239e+002	1.4550e+000	7.2570e+002	1.0559e+003	3
	11F	42.0000	RX(RS)	6.1936e+002	1.2765e+002	0.0000e+000	0.0000e+000	1.6752e+003	4.0600e+002	1.6752e+003	4.0600e+002	1.4550e+000	6.1936e+002	9.0118e+002	2
	10F	38.0000	RX(RS)	5.9193e+002	1.2561e+002	0.0000e+000	0.0000e+000	2.2126e+003	5.1189e+002	2.2126e+003	5.1189e+002	1.4550e+000	5.9193e+002	8.6126e+002	2
	9F	34.0000	RX(RS)	5.8129e+002	1.3228e+002	0.0000e+000	0.0000e+000	2.6461e+003	5.8096e+002	2.6461e+003	5.8096e+002	1.4550e+000	5.8129e+002	8.4578e+002	2
	8F	30.0000	RX(RS)	5.8193e+002	1.4513e+002	0.0000e+000	0.0000e+000	3.0160e+003	6.3152e+002	3.0160e+003	6.3152e+002	1.4550e+000	5.8193e+002	8.4672e+002	2
	7F	26.0000	RX(RS)	5.9641e+002	1.6037e+002	0.0000e+000	0.0000e+000	3.3395e+003	6.7525e+002	3.3395e+003	6.7525e+002	1.4550e+000	5.9641e+002	8.6777e+002	2
	6F	22.0000	RX(RS)	6.0136e+002	1.6022e+002	0.0000e+000	0.0000e+000	3.6369e+003	7.2650e+002	3.6369e+003	7.2650e+002	1.4550e+000	6.0136e+002	8.7498e+002	2
	5F	18.0000	RX(RS)	5.8307e+002	1.5125e+002	0.0000e+000	0.0000e+000	3.9241e+003	7.9047e+002	3.9241e+003	7.9047e+002	1.4550e+000	5.8307e+002	8.4836e+002	2
	4F	14.0000	RX(RS)	5.6356e+002	1.4061e+002	0.0000e+000	0.0000e+000	4.1969e+003	8.5989e+002	4.1969e+003	8.5989e+002	1.4550e+000	5.6356e+002	8.1998e+002	2
	3F	9.5000	RX(RS)	5.1043e+002	1.1924e+002	0.0000e+000	0.0000e+000	4.4486e+003	9.2799e+002	4.4486e+003	9.2799e+002	1.4550e+000	5.1043e+002	7.4268e+002	2 =
	2F	5.0000	RX(RS)	2.8667e+002	6.3214e+001	0.0000e+000	0.0000e+000	4.6611e+003	9.8563e+002	4.6611e+003	9.8563e+002	1.4550e+000	2.8667e+002	4.1710e+002	2
	1F	0.0000	RX(RS)	4.7744e+003	1.0155e+003	0.0000e+000	0.0000e+000	4.7744e+003	1.0155e+003	4.7744e+003	1.0155e+003	1.3800e+000	4.7744e+003	6.5886e+003	3
	Roof	50.0000	RY(RS)	2.5204e+002	7.7464e+002	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.8000e+000	7.7464e+002	1.3943e+003	3
	12F	46.0000	RY(RS)	1.7350e+002	4.9259e+002	0.0000e+000	0.0000e+000	2.5204e+002	7.7464e+002	2.5204e+002	7.7464e+002	1.8000e+000	4.9259e+002	8.8665e+002	2
	11F	42.0000	RY(RS)	1.2645e+002	3.8826e+002	0.0000e+000	0.0000e+000	4.2182e+002	1.2457e+003	4.2182e+002	1.2457e+003	1.8000e+000	3.8826e+002	6.9886e+002	2
	10F	38.0000	RY(RS)	1.1507e+002	4.2026e+002	0.0000e+000	0.0000e+000	5.2785e+002	1.5131e+003	5.2785e+002	1.5131e+003	1.8000e+000	4.2026e+002	7.5647e+002	2
	9F	34.0000	RY(RS)	1.2860e+002	4.5725e+002	0.0000e+000	0.0000e+000	5.8600e+002	1.6793e+003	5.8600e+002	1.6793e+003	1.8000e+000	4.5725e+002	8.2305e+002	2
	8F	30.0000	RY(RS)	1.5186e+002	4.8340e+002	0.0000e+000	0.0000e+000	6.1592e+002	1.8187e+003	6.1592e+002	1.8187e+003	1.8000e+000	4.8340e+002	8.7012e+002	2
	7F	26.0000	RY(RS)	1.7226e+002	5.0311e+002	0.0000e+000	0.0000e+000	6.3822e+002	1.9652e+003	6.3822e+002	1.9652e+003	1.8000e+000	5.0311e+002	9.0560e+002	2
	6F	22.0000	RY(RS)	1.8141e+002	5.0067e+002	0.0000e+000	0.0000e+000	6.7439e+002	2.1390e+003	6.7439e+002	2.1390e+003	1.8000e+000	5.0067e+002	9.0121e+002	2
	5F	18.0000	RY(RS)	1.7673e+002	4.8819e+002	0.0000e+000	0.0000e+000	7.3531e+002	2.3395e+003	7.3531e+002	2.3395e+003	1.8000e+000	4.8819e+002	8.7875e+002	2
	4F	14.0000	RY(RS)	1.6288e+002	4.8710e+002	0.0000e+000	0.0000e+000	8.1538e+002	2.5485e+003	8.1538e+002	2.5485e+003	1.8000e+000	4.8710e+002	8.7678e+002	2
	3F	9.5000	RY(RS)	1.3648e+002	4.5500e+002	0.0000e+000	0.0000e+000	9.0127e+002	2.7576e+003	9.0127e+002	2.7576e+003	1.8000e+000	4.5500e+002	8.1900e+002	2
	2F	5.0000	RY(RS)	7.4079e+001	2.5728e+002	0.0000e+000	0.0000e+000	9.7620e+002	2.9516e+003	9.7620e+002	2.9516e+003	1.8000e+000	2.5728e+002	4.6310e+002	2
	1F	0.0000	RY(RS)	1.0155e+003	3.0635e+003	0.0000e+000	0.0000e+000	1.0155e+003	3.0635e+003	1.0155e+003	3.0635e+003	1.8000e+000	3.0635e+003	5.5142e+003	3 -
4 >	\Story	Shear(fo	or R.S.) 🤇	Story Sh	ear Force C	oefficient	1	•							Þ

그림 5.9 동적 밑면 전단력 확인

양방향 조건이 동일하므
 로 어느 방향으로 입력하
 여도 무방합니다.

▶ 비정형 건물의
 Modification Factor 산정시
 고려하는 계수 C_u를 사용
 0.9213x1.41253=1.301을
 적용합니다.

- 1. Main Menu의 Load > Lateral > Seismic Loads 선택
- 2. Static Seismic Loads 대화상자의 Add 버튼 클릭
- 3. Seismic Load Code 선택란에서 'KBC(2009)' 확인
- 4. Seismic Zone '1', Zone Factor(S)'0.22', Site Class 'Sd' 선택
- 5. Seis. Use Group란에 'I', Importance(Ie)란에 '1.2' 확인
- 6. Approximate Period 의 오른쪽 ... 버튼 클릭
- 7. X-Direction Period, Y-Direction Period 선택란에 '3. T=0.049hn^(3/4)'선택 후
 ○K 버튼 클릭 ♀
- 8. Analytical Period 의 X-Dir.에 '1.1010', Y-Dir.에 '1.2561'입력
- 9. Response Modification Factor(R)에 X-Direction, Y-Direction 선택란에서 '5.5' 선택
- 10. Seismic Load Profile,.. 버튼 클릭
- 11. Scroll Bar를 조정하여 GL의 Story Shear에서 '6326.8kN' 확인
- 12. Component 선택란에서 Y-Dir. 선택 후 Scroll Bar를 조정하여 GL의 Story Shear 에서 '5545.54kN' 확인
- 13. 모든 창 닫기
 - > X-Dir Scale-Up Factor : 0.85 X (6326.8/4774.4) =1.13
 - Y-Dir Scale-Up Factor : 0.85 X (5545.5/3063.5) =1.54

그림 5.10 밑면전단력 비교용 등가정적 지진하중

전도 모멘트 검토

midas Gen에서는 지진하중에 의한 각 층의 전도모멘트가 자동으로 산출됩니다. KBC 2005 내진설계기준에서는 전도모멘트에 저항할 수 있도록 저항모멘트를 계산해야 합니다. 그러나 저항모멘트는 하중방향과 구조물의 형상에 따라서 변하므로 midas Gen 에서는 수직부재의 축력의 합과 중심을 자동 계산해 줍니다.

→ KBC 2009-0306.5.6.5 —

건물은 0306.5에 따라 결정된 지진하중으로 인한 전도모멘트에 대하여 저항할 수 있도록 설계하여야 한다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Overturning Moment 선택
- 2. Load Case/Load Combination에서 RX(RS)에 '√'표시 후 OK 버튼 클릭
- 마우스 오른쪽 클릭하여 Context Menu의 Set Overturning Moment Parameters 클릭
- 4. Scale Factor for Response Spectrum 입력란에 '1.13' 입력
- 5. Define Reduction Factor에서 'Fixed(1.0)'선택 후 OK 버튼 클릭 *
- 6. Context Menu의 Activate Records 클릭
- Load Case/Load Combination에서 RY(RS)에만 '√'표시 후
 OK 버튼 클릭
- 8. Context Menu의 Set Overturning Moment Parameters클릭
- 9. Scale Factor for Response Spectrum 입력란에 '1.54'넣고 OK 버튼 클릭

전도모멘트 감소계수는 정적해석에서 구한 결과 에서 고층 구조물에서 고 차모드의 영향을 고려하 는 계수로서 등가정적 지 진해석의 경우에는 층에 다라 감소계수를 다르게 적용합니다. 그러나 동적 해석에 대해서는 1.0으로 적용할 수 있습니다.

							Result-	Overturning N	(oment]						• **
	Land Carry	Share	Level	Story Height	Reduction	Angle1	Overtu	rning Moment by (kN	Vertical Member ·m)	Types	Sum of Story Force1 *	Overturning	Angle2	Overtu	rnin 🏠
	Load Case	Story	(m)	(m)	(T)	([deg])	Fra	me	W	all	(kN·m)	(kN·m)	([deg])	Fra	me
							Value	Ratio	Value	Ratio				Value	
	Angle for s	tatic load car	se result: 0 (De	ig]											
	Input angle	and press 'A	opply' button to	change angle.		0.00	Apply								
	RX(RS)	12F	46.00	4.00	1.00	0.00	2892.75	0.58	2084.96	0.42	4.37878e+003	4.37878e+003	90.00	839.03	
	RX(RS)	11F	42.00	4.00	1.00	0.00	5627.22	0.44	7100.49	0.56	1.19506e+004	1.19506e+004	90.00	1461.70	
	RX(RS)	10F	38.00	4.00	1.00	0.00	8447.99	0.37	14353.85	0.63	2.19515e+004	2.19515e+004	90.00	2089.85	E
	RX(RS)	9F	34.00	4.00	1.00	0.00	13007.97	0.37	21818.63	0.63	3.39119e+004	3.39119e+004	90.00	2821.60	
	RX(RS)	8F	30.00	4.00	1.00	0.00	17333.91	0.36	31153.75	0.64	4.75442e+004	4.75442e+004	90.00	3480.61	
	RX(RS)	7F	26.00	4.00	1.00	0.00	22290.46	0.35	41311.63	0.65	6.26386e+004	6.26386e+004	90.00	4132.93	
	RX(RS)	6F	22.00	4.00	1.00	0.00	27048.76	0.34	53006.85	0.66	7.90776e+004	7.90776e+004	90.00	4668.63	
	RX(RS)	SF	18.00	4.00	1.00	0.00	32580.87	0.33	65232.80	0.67	9.68144e+004	9.68144e+004	90.00	5396.91	
	RX(RS)	4F	14.00	4.00	1.00	0.00	37617.56	0.32	79187.80	0.68	1.15784e+005	1.15784e+005	90.00	5937.24	
	RX(RS)	3F	9.50	4.50	1.00	0.00	43829.01	0.31	95624.38	0.69	1.38405e+005	1.38405e+005	90.00	6527.34	
	RX(RS)	2F	5.00	4.50	1.00	0.00	48903.63	0.30	114265.91	0.70	1.62107e+005	1.62107e+005	90.00	6954.83	
	RX(RS)	1F	0.00	5.00	1.00	0.00	57223.29	0.30	132924.58	0.70	1.89082e+005	1.89082e+005	90.00	7877.40	
4 >	∖Overtu	Irning M	oment/								III				F

(a) 보정계수(Cm)=1.13 적용한 경우(RX Load Case)

G							Result-	Overturning N	(oment]						o X
			Level	Story Height	Reduction	Angle1	Overtu	rning Moment by (kN	Vertical Member m)	r Types	Sum of Story Force1 *	Overturning	Angle2	Overtu	irnin 🏠
	Load Case	Story	(m)	(m)	(T)	([deg])	Fra	ime	W	/all	(kN·m)	(kN·m)	([deg])	Fra	ame
							Value	Ratio	Value	Ratio				Value	
	Angle for s	tatic load ca	se result: 0 [De	g]											_
	Input angle	and press V	Apply' button to	change angle.		0.00	Apply								
►	RY(RS)	12F	46.00	4.00	1.00	90.00	3388.03	0.52	3076.03	0.48	4.77177e+003	4.77177e+003	180.00	899.95	
	RY(RS)	11F	42.00	4.00	1.00	90.00	6026.83	0.41	8710.97	0.59	1.24455e+004	1.24455e+004	180.00	1770.17	
	RY(RS)	10F	38.00	4.00	1.00	90.00	8770.00	0.36	15673.75	0.64	2.17659e+004	2.17659e+004	180.00	2670.76	E
	RY(RS)	9F	34.00	4.00	1.00	90.00	12019.78	0.34	23065.19	0.66	3.21106e+004	3.21106e+004	180.00	4058.53	
	RY(RS)	8F	30.00	4.00	1.00	90.00	15100.94	0.32	31394.41	0.68	4.33137e+004	4.33137e+004	180.00	5349.75	
	RY(RS)	7F	26.00	4.00	1.00	90.00	18275.88	0.31	40531.30	0.69	5.54192e+004	5.54192e+004	180.00	6768.98	
	RY(RS)	6F	22.00	4.00	1.00	90.00	21092.68	0.29	51130.27	0.71	6.85952e+004	6.85952e+004	180.00	8135.31	
	RY(RS)	5F	18.00	4.00	1.00	90.00	24759.27	0.28	62169.30	0.72	8.30068e+004	8.30068e+004	180.00	9680.61	
	RY(RS)	4F	14.00	4.00	1.00	90.00	27838.90	0.27	75144.31	0.73	9.87056e+004	9.87056e+004	180.00	11128.52	
	RY(RS)	3F	9.50	4.50	1.00	90.00	31097.75	0.25	91349.29	0.75	1.17816e+005	1.17816e+005	180.00	12920.48	
	RY(RS)	2F	5.00	4.50	1.00	90.00	33810.71	0.24	109629.10	0.76	1.38270e+005	1.38270e+005	180.00	14542.95	
	RY(RS)	1F	0.00	5.00	1.00	90.00	38742.96	0.23	129278.19	0.77	1.61859e+005	1.61859e+005	180.00	16852.14	-
• •	\Overtu	Irning M	oment /						¢ [m				F

(b) 보정계수(Cm)=1.55 적용한 경우(RY Load Case)

그림 5.11 전도모멘트 평가결과 Table

수직부재 축력과 그 중심 좌표를 확인하여 전도모멘트에 저항하는 저항모멘트를 계산합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Story Axial Force Sum 선택
- 2. Load Case/Load Combination에서 DL(ST)에 '✓' 표시 후 버튼 클릭

G				Result-[Story	/ Axial Force Sum]		_ 0	X
			Laural	Change Haight	Axial Force Sum of Vertical	Center of A	xial Forces	A
	Load Case	Story	(m)	(m)	Elements (kN)	X Coordinate	Y Coordinate	
	DL	12F	46.00	4.00	-9981.361070	18.0152	14.1915	
	DL	11F	42.00	4.00	-18727.202139	18.0307	14.2149	
	DL	10F	38.00	4.00	-27473.043209	18.0390	14.2253	
	DL	9F	34.00	4.00	-36384.577437	18.0294	14.2281	
	DL	8F	30.00	4.00	-45296.111665	18.0249	14.2298	=
	DL	7F	26.00	4.00	-54237.771922	18.0182	14.2306	
	DL	6F	22.00	4.00	-63179.432179	18.0143	14.2314	
	DL	5F	18.00	4.00	-72392.226695	18.0049	14.2301	1
	DL	4F	14.00	4.00	-81605.021211	18.0040	14.2293	1
	DL	3F	9.50	4.50	-91393.034589	18.0072	14.2246	
	DL	2F	5.00	4.50	-101751.287968	18.0093	14.2201	
	DL	1F	0.00	5.00	-112509.652667	17.9889	14.2187	Ŧ
4	\Story	Axial Fo	rce Sum/				•	

그림 5.12 Story Axial Force Sum Table

(b) Resistance Moment

(a) Center of Axial Force Sum

그림 5.13 저항모멘트 개념

MIDAS

Story	Overturning Moment (RX)	Axial Force Sum	X Distance	Resistance Moment (X)	Remark
12F	1106	9981	18.0152	179816.2159	OK
11F	2962	18727	18.0307	337664.5636	OK
10F	5309	27473	18.039	495586.2265	OK
9F	7980	36385	18.0294	655992.1005	OK
8F	10891	45296	18.0249	816457.8832	OK
7F	14009	54238	18.0182	977267.0221	OK
6F	17364	63179	18.0143	1138133.245	OK
5F	21011	72392	18.0049	1303414.802	OK
4F	24971	81605	18.004	1469216.802	OK
3F	29769	91393	18.0072	1645732.653	OK
2F	34858	101751	18.0093	1832469.47	OK
1F	40678	112510	17.9889	2023924.891	OK
Story	Overturning Moment (RY)	Axial Force Sum	Y Distance	Resistance Moment (Y)	Remark
12F	1571	9981	14.1915	141969.6	OK
11F	4205	18727	14.2149	263051.4	OK
10F	7509	27473	14.2253	384252.6	OK
9F	11188	36385	14.2281	507545.7	OK
8F	15069	45296	14.2298	630881.1	OK
7F	19105	54238	14.2306	754554.9	OK
6F	23377	63179	14.2314	878140.7	OK
5F	28034	72392	14.2301	1005158.6	OK
4F	33187	81605	14.2293	1132275.7	OK
3F	39582	91393	14.2246	1268108.7	OK
2F					
21	46496	101751	14.2201	1412285.4	OK

(단위: kN,m)

P-delta 해석 적용여부 검토

안정계수를 확인하여 P-delta 해석 적용여부를 검토합니다. (KBC2009-0306.5.7.2)

→ KBC 2009-0306.5.7.2 -

안정계수(θ)가 0.1보다 크고, θmax 이하일 경우에는 층간 변위와 부재력은 P-Δ 효과 를 고려하여 산정하며, 특히 θ가 θmax보다 클 경우, 건물은 잠재적으로 불안정하므 로 재설계해야 한다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Stability Coefficient 선택
- 2. Load Case/Load Combination에서 RX(RS)에 '√'표시 후 OK 버튼 클릭
- 3. Deflection Amplification Factor(Cd)입력란에 '4.5'입력
- 4. Importance Factor(Ie)입력란에 '1.2'
- 5. Scale Factor에 '1.13' 입력
- 6. Vertical Load Combination 선택란에 'DL' 선택
- 7. Add 버튼 클릭 🖲
- 8. Vertical Load Combination 선택란에 'LL' 선택
- 9. Add 버튼 클릭 🖲
- 10. Story Drift Method에서 'Drift on the Center of Mass' 선택
- 11. OK 버튼 클릭
- 12. Remark열에서 'OK' 확인
- 13. 'RY(RS) Load Case'도 같은 방법으로 Stability Coefficient(Y) Tab에서 확인

그림 5.15에서 P-delta 해석적용 여부를 확인한 결과가 'OK'이기 때문에 P- delta 해석 을 수행할 필요는 없습니다(그림 5.15 참조). 만약 Remark에서 'P-delta Req.'가 출력되 면 P- delta 해석을 수행해야 하고, 'Redesign'이 출력되면 건물은 잠재적으로 불안정하 므로 재설계해야 합니다.

Stability Coefficient = (Vertical Load*Modified Drift) / (Story Shear Force* Scale Factor*Height*Cd)

> Modified Drift = (Cd*Drift*Scale Factor)/(le)

> Stability Coefficient계산시 Cd값과 Scale Factor값은 분모, 분자에서 감쇄되기 때문에 이 값들의 변경과 관계가 없습니다. 단, Modified Drift값에는 영향을 미칩니다.

그림 5.14 안정계수의 Parameters 정의

G					Result-[S	tability Coefficien	t]				_ 0	53
	Load Case	Story	Story Height (m)	Vertical Load (kN)	Story Shear Force (kN)	Modified Story Drift (m)	Beta (β)	Stability Coefficient (θ)	Allowable Limit	Remark	P-Delta Incremental Factor (ad)	
	Cd=4.5, le= Press right	1.2, Scale f mouse butto	Factor=1 n and click 'Set	Stability Coefficient	t Parameters' men	u to change Cd/le/So	cale Factor/Bet	a!				
	RX(RS)	12F	4.00	13670.9220	968.7561	0.0061	1.0000	0.0048	0.1111	ок	1.0000	
	RX(RS)	11F	4.00	26482.6824	1675.1884	0.0067	1.0000	0.0059	0.1111	ОК	1.0000	
	RX(RS)	10F	4.00	39294.4428	2212.5899	0.0073	1.0000	0.0072	0.1111	ОК	1.0000	
	RX(RS)	9F	4.00	52293.4365	2646.0902	0.0076	1.0000	0.0083	0.1111	ок	1.0000	
	RX(RS)	8F	4.00	65292.4302	3016.0013	0.0079	1.0000	0.0095	0.1111	ОК	1.0000	
	RX(RS)	7F	4.00	78325.4663	3339.4783	0.0081	1.0000	0.0105	0.1111	ок	1.0000	
	RX(RS)	6F	4.00	91358.5024	3636.9467	0.0082	1.0000	0.0114	0.1111	ОК	1.0000	
	RX(RS)	5F	4.00	104697.9202	3924.0624	0.0080	1.0000	0.0119	0.1111	ОК	1.0000	
	RX(RS)	4F	4.00	118037.3380	4196.8805	0.0078	1.0000	0.0122	0.1111	ОК	1.0000	1
	RX(RS)	3F	4.50	132026.7531	4448.5778	0.0082	1.0000	0.0120	0.1111	ОК	1.0000	
	RX(RS)	2F	4.50	148271.4674	4661.1230	0.0070	1.0000	0.0110	0.1111	ОК	1.0000	
	RX(RS)	1F	5.00	164968.3075	4774.3688	0.0046	1.0000	0.0070	0.1111	ОК	1.0000	-
	∖Stabili	ty Coeff	icient(X)	Stability Co	efficient(Y)				III			j j

(a) Stability Coeffcient(X) Tab

					Result-[S	tability Coefficier	it]				_ 0	X
	Load Case	Story	Story Height (m)	Vertical Load (kN)	Story Shear Force (kN)	Modified Story Drift (m)	Beta (β)	Stability Coefficient (θ)	Allowable Limit	Remark	P-Delta Incremental Factor (ad)	Î
	Cd=4.5, le= Press right	1.2, Scale F mouse butto	actor=1 n and click 'Set	Stability Coefficient	t Parameters' men	u to change Cd/le/S	cale Factor/Bet	a!				
	RY(RS)	12F	4.00	13670.9220	774.6383	0.0080	1.0000	0.0079	0.1111	ок	1.0000	
	RY(RS)	11F	4.00	26482.6824	1245.7301	0.0083	1.0000	0.0098	0.1111	ОК	1.0000	
	RY(RS)	10F	4.00	39294.4428	1513.0586	0.0085	1.0000	0.0122	0.1111	ОК	1.0000	-
	RY(RS)	9F	4.00	52293.4365	1679.3343	0.0085	1.0000	0.0146	0.1111	ОК	1.0000	=
	RY(RS)	8F	4.00	65292.4302	1818.6759	0.0084	1.0000	0.0168	0.1111	ОК	1.0000	
	RY(RS)	7F	4.00	78325.4663	1965.1940	0.0082	1.0000	0.0181	0.1111	ОК	1.0000	
	RY(RS)	6F	4.00	91358.5024	2138.9511	0.0079	1.0000	0.0187	0.1111	ОК	1.0000	
	RY(RS)	5F	4.00	104697.9202	2339.5460	0.0073	1.0000	0.0181	0.1111	ОК	1.0000	
	RY(RS)	4F	4.00	118037.3380	2548.5112	0.0066	1.0000	0.0171	0.1111	ОК	1.0000	
	RY(RS)	3F	4.50	132026.7531	2757.6347	0.0064	1.0000	0.0152	0.1111	ОК	1.0000	1
	RY(RS)	2F	4.50	148271.4674	2951.5534	0.0051	1.0000	0.0126	0.1111	ОК	1.0000	
	RY(RS)	1F	5.00	164968.3075	3063.4643	0.0028	1.0000	0.0068	0.1111	ОК	1.0000	-
< >	∖ Stabil	ity Coeffi	cient(X) 🚶	Stability Co	efficient(Y)/				m		+	

(b) Stability Coeffcient(Y) Tab

그림 5.15 안정계수 평가결과 Table

MIDAS

사용성 평가

사용하중조건에서 지진하중 작용시에 층간 변위를 검토합니다. 이 구조물은 비틀림 비정형구조물이므로 모서리 층간변위 중 최대값과 허용 층간 변위와 비교하여 안정 성을 평가합니다. 만약, 비틀림 비정형이 아닌 경우에는 질량중심에서의 층간 변위로 구조물의 안정성을 검토합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Story Drift 선택
- 2. Load Case/Combination에서 RX(RS), RY(RS)에 '√'표시 후
 - OK 버튼 클릭
- 3. Deflection Amplification Factor(Cd)에 '4.5'입력
- 4. Importance Factor(Ie)에 '1.2'입력
- 5. Scale Factor에 '1' 입력
- 6. Allowable Ratio에서 '0.015' 입력 🖗
- 7. Vertical Load Combination 선택란에 'DL'선택 후 Add 버튼 클릭
 - Vertical Load Combination 선택란에 'LL'선택 후 Add 버튼 클릭
- 9. OK 버튼 클릭

8.

- 10. Maximum Drift of All Vertical Elements > Remark 열에서 'OK' 확인
- 11. Drift on the Center of Mass > Remark 열에서 'OK'확인
- 12. 같은 방법으로 RY(RS)하중조합을 Drift(Y)Tab에서 확인
- G KBC 2009에서는 내진등 급에 따라 허용층간변위 가결정됩니다.
 - 특 : 0.01 hx
 - I : 0.015 hx
 - II : 0.02 hx

5-5 하중조합

1.	Main Menu에서	Results >	Combination > Load	Combination	클릭
----	-------------	-----------	--------------------	-------------	----

- 2. Concrete Design Tab 선택
- 3. Auto Generation... 버튼 클릭
- 4. Design Code에서 'KCI-USD12' 확인
- 5. Scale Up Factor에 RX 선택하고 '1.13' 입력
- 6. Add 버튼 클릭
- 7. RY 선택하고 '1.54' 입력, Add 버튼 클릭
- 8. Consider Orthogonal Effect $\mathfrak{G}(\cdot, \mathbf{T}, \mathbf{T})$
- 9. Set Load Cases for Orthogonal Effect,.. 버튼 클릭
- 10. Load Case 1 에 'RX(RS)', Load Case 2 에 'RY(RS)'선택
- 11. Add 버튼 클릭
- 12. OK 버튼 클릭
- 13. '100 : 30 Rule' 확인
- 14. For Special Seismic Load 에 '√' 표시
- 15. For Vertical Seismic Forces 에 '√' 표시
- 16. Factors for Seismic Design,... 버튼 클릭
 - 17. Vertical Load Factor에 '0.2'확인
- 18. Sds 에 '0.49867'입력
- 19. Load Case에 'RX(RS)'선택
- 20. Over-Strength Factor에 '2.5' 입력, Add 버튼 클릭
- 21. Load Case에 'RY(RS)'선택 후, Add 버튼 클릭
- 22. Vertical Load Factor에 '0.2'확인 후, OK 버튼 클릭
- 23. OK 클릭 후, Close 버튼 클릭

	Combin:	ation List		-			Load Cases	and Factors	
•	No 1	Name	Active	Type	1.4D	Descr	tionLoa	dCase Fact	or 1000
·	2	cLCB2	Stren	Add	1.4D	1.6L	*	/	4000
	3	cLCB3	Stren	Add	1.2D +	1.3WX +	.0L		
	4	cLCB4	Stren	Add	1.2D +	1.3WY +	0.0L		
	6	cLCB6	Stren	Add	1.2D -	1.3WY +	0L		
	7	cLCB7	Stren	Add	1.2D +	1.0(1.0(1	3)(RX(RS)+R		
	8	cLCB8	Stren	Add	1.2D +	1.0(1.0(1	3)(RX(RS)-RX 3)(RX(RS)+R		
	10	cLCB10	Stren	Add	1.2D +	1.0(1.0(1	Automatia Consertion of	Land Cambrid	X
	11	cLCB11	Stren	Add	1.2D +	1.0(1.0(1	Automatic Generation of	Load Combin	hations
	13	cLCB12	Stren	Add	1.2D +	1.0(1.0(Option		
	14	cLCB14	Stren	Add	1.2D +	1.0(1.0(1	💿 Add 🛛 🔿 Repla	се	
	15	cLCB15 cl CB16	Stren	Add	1.2D +	1.0(1.0(1			
	17	cLCB17	Stren	Add	1.2D +	1.0(1.0(1	Code Selection		
	18	cLCB18	Stren	Add	1.2D +	1.0(1.0(1	🔿 Steel 🛛 💿 Cor	ncrete 📀	SRC
	20	cLCB19	Stren	Add	1.2D +	1.0(1.0(🔿 Footing 🛛 🔿 Alu	minum	
_	21	cLCB21	Stren	Add	1.2D +	1.0(1.0(1	Design Code : 🛛 K	CI-USD12	-
•									
0		leas -		Auto Carro	rotion		Scale Up of Respon	se Spectrum	Load Cases
Ca	υμλ	Impo	n	Auto Gene	aration		Scale Up Factor :	1	RX V
Se	t Load	Cases	for Ort	hogonal	Effect	X			
				_			Factor Load C	ase	Add
ſ	-Ortho	gonal	Loads	Group-			1,130 RX		Modify
	Def	ine Or	thogon	al Load	Cases	-	1,540 RY		Delete
	Loc	d Coo	o 1 · [E)
	LUa	u cas	ervi	17(113)	L		Manipulation of Con	struction Stag	ge Load Case —
	Loa	d Cas	e 2 : F	RY(RS)	-		ST : Static Load Ca	ase	
							CS : Construction S	Stage Load C	ase
	Gro	oup No	L	C1	LC2		● ST Only 🛛 🔿	CS Only	⊙ ST+CS
		1	BX	(RS) F	Y(RS))	Consider Others		
							Consider Onnogi	Jilai Ellect	
							Set Load Cases	s for Orthogor	nal Effect,
							IO0 : 30 Rule		
							SRSS(Square-R	loot-of-Sum-	of-Squares)
		۱dd	Mo	dify	Delet	е	Concerna Additional	Land Cambin	
		_					Generate Additional	Ebau Combir India Listed	adons
			OK		Cano	el	M for Special Seis	mic Load	
							I for Vertical Seis	mic Forces	
Fac	tors fo	r Seismi	ic Desig	n		×	Factors for	Seismic Des	sign
	Speel	al Solor	nie Lee	de			Consider Vertical Pr	essure Load((Earth)
	opecia u	ar oerst					aH	. [1	
	vertic	al Load	i Facto	r: 0,2			un		
			Sds	s: 0,49	9867		Will Execute Const	ruction Stage	Analueie
	Sys	tern Ov	er-Strei	ngth Facto	or			fee Decision	
		10		[DV/DC)			Consider Losses	ior Prestress	Load Cases
	Loa	u Case		ERX(RS)	•		Transfer Stage	: [1	Define
	Ove	r-Stren	gth Fac	tor: 2,5			Service Load Stage	: 1	Factors
		and Co		actor	Adr				
		Jau Cas	se F	actor				OK	Cancel
		BV(BS))	2,5	Modi	ify			
		ni (no,	,	2,0					
					Dele	te			
	Vertic:	al Seisr	nic For	ces					
	Vertic: Vertic	al Seisr al Forc	nic For e Facto	ces r: 0,2					
	Vertic: Vertic	al Seisr al Forc	mic For e Facto	ces r: 0,2					

그림 5.16

5-6 반력 및 부재력 확인

구조해석 결과의 타당성 및 사용성 검토 과정은 Steel Application을 참조하기바랍니다.

본 장에서는 구조해석의 결과로 구해진 반력 및 부재력을 Text Output형식으로 출력, 확인합니다.

- 1. Main Menu에서 Results > Text > Text Output 선택
- 2. Text Printout Wizard의 Add New Load Set 버튼 클릭
- 3. Output Load Set Name 입력란에 'Factored Load Set' 입력
- 4. ok 버튼 클릭
- 5. Add New Load Set 버튼 클릭
- 6. Output Load Set Name입력란에 'Service Load Set' 입력
- 7. Unselect All 클릭하여 선택된 하중조합조건의 '√' 표시 해제
- 76번 항목 (SERV:D+L)과 횡방향 단위하중조건(WX, WY)에 '√' 표시하여 선택한 후 ○
- 9. 다음(<u>N</u>) > 버튼 클릭
- 10. Element Output Selection 대화상자의 Output Load Set for Element Output 선택란 에 'Factored Load Set' 확인
- 11. Beam 선택란에 '√' 표시 후 버튼 클릭 (그림 5.18 참조)
- 12. Element Selection Detail 대화상자의 Material 탭 선택
- 13. '2:Column'을 선택한 후 🥂 버튼을 클릭하여 Unselected로 이동
- 14. Select Outputs 선택란에서 'Frc | Min/Max by property'만 Check on
- 15. Output Detail 선택란에서 '5pt' 선택 (그림 5.18 ❷ 참조)
- 16. 확인 버튼 클릭
- 17. 다음(<u>N</u>) > 버튼 클릭

Fext Printout Wizard	×
Registered Output Load Sets Factored Load Set Service Load Set	Step Option @ All Steps C Last Step
Add New Load Set Modify Load Set Dele A Load Set is defined by combining certain load cases combinations for a specific print-out. For example, a lo evaluating reactions, another load set for element resul You may specify up to 3 load sets	ete Load Set s and load ad set for ts, and so on,
(뒤로(B)) 다음(A))> 취소

그림 5.17 Text Printout Wizard

	ection			×					
Element Outp Output Load	out Set for El	ement Output Fa	ctored Load Set	•					
☐ Trus Ø Bea r ☐ Plan ☐ Plan	e Strain e Strass		Plate Wall Axisymmetric Solid						
Selected Outpu	ut								
Element	Туре	l	Description	<u> </u>					
Beam	Frc	Default							
Beam	Frc	Min/Max by Property							
Beam	Str	Default Min/Marchy Departs	efault						
		< 뒤로	(<u>B</u>) 다음(<u>N</u>) >	취소					
		(뒤로	(B) 다음(<u>N</u>) > (취소					
nent Selection Det	ail	< 뒤로	(B) 다음(N)> (취소 <u>· · · · · · · · · · · · · · · · · · · </u>					
nent Selection Det Beam ID Section Unselected 2: Column	ail Materia	< 뒤로 Story Nam ▲ Selected 1: Girder 3: Wall 4: Girder(2~4F 5: Column(1~4 6: Wall(1~4F)	(B) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	취소 x					
nent Selection Det Beam ID Section Unselected 2: Column Filter: 1to69 7: PreSel:	ail Materia	< FI로 I Story Nam ▲ A Selected I: Girder I: Girder	(B) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	취소 x stion ^ perty perty 3 pt ⓒ 5 pt rties					

그림 5.18 Element Selection Detail

- Displ & React. Output Selection 대화상자의 Output Load Set for Displacement Output 선택란에 'Service Load Set' 선택
- Output Load Set for React. Output 선택란에 'Service Load Set' 선택 (그림 5.19 참조)
- 3. Displacement, Reaction 선택란에 '√' 표시 후, Displacement의 🛄 버튼 클릭
- 4. ID 탭에 Selected에 위치한 모든 절점번호 확인*
- 5. 그림 5.20 (a) ❶의 Story 탭을 클릭하여 __<< 버튼 클릭
- 6. Unselected에서 '13 : Roof' 선택한 후 → 버튼 클릭 🖗
- 7. 그림 5.20 (a) ❷의 Use 선택란에 '√'표시
- 8. Node Selection Detail 대화상자의 Reaction 탭 선택
- 8. Select Output에서 Local (if defined) 에 '√' 표시 해제 [®]
- 9. 확인 버튼 클릭
- 10. 다음(<u>N</u>) > 버튼 클릭
- 11. Result Output List 대화상자의 마침 버튼 클릭

	et for Displ	acement Output						
Service Load Set								
Reaction Output								
Output Load Se	et for Reac	t, Output						
Service Load	Set	Beaction						
elected Output								
Output	Туре	Description 🔺						
Node Displ.	Disp	Default						
Reaction	React	Default						

그림 5.19 Output 별 Load Set 선택

- ● 절점을 선택하는 구분자 로 사용되는 ID, Story, Named Plane, Group들은 각각의 선택된 범위의 공 통분모를 Text File형식으 로 출력합니다.
- 최상층의 절점을 선택하
 여 최대 변위를 확인합니다.
- 반력 데이터는 별도로 대 상 절점을 지정하지 않더 라도 Support 조건이 부여 되어 있는 지점에 대해서 만 반력이 출력됩니다.

Node Selection Detail	
Displacement Reaction ID Story Named Plane Group Unselected Selected 1: IF 2: 2F 3: 3F 5: 5F 7: 7F 8: 8E Filter: 424to459 PreSel:	Select Output Type Description Image: Disp Default
확인 🗌	취소 적용(<u>A</u>) 도움말

(a) Node Selection Detail-Displacement

ID Story Named Plane Group Unselected Selected 2 3 4 5 6 7 8 Filter: Ito459 PreSel:	Select Output
---	---------------

(b) Node Selection Detail-Reaction

- 1. MIDAS/Text Editor의 Edit > Find 선택
- 2. Find 대화상자의 Find What 입력란에 'Reaction' 입력
- 3. Find Next 버튼 클릭을 반복(키보드 ^F클릭)하여 "REACTON FORCES &

MOMENTS DEFAULT PRINTOUT" 찾기

- 4. 사용성 평가용 Load Set에 의한 반력확인 (그림 5.21 참조)
- 5. 키보드를 사용하여 'Ctrl+F' 누른후 Find 대화상자의 Find What 입력란에 'MIN/MAX' 입력 후

 Find Next
- 6. 부재력의 하중조합별 최대/최소값 출력 확인(그림 5.22 참조)
- 7. Find 대화상자의 Find What 입력란에 'Displacement' 입력 후

 __________ Find Next

 버튼 클릭
- 8. Load Set에 대한 지붕층에 변위값 확인
- 9. 🔀 클릭하여 MIDAS/Text Editor 종료

	/Text Editor - [RC1.a	anl]	-	-	-				1 X
Eile	Edit ⊻iew Wind	ow <u>H</u> el	p I≣IIaa ∩?			10/ 116 Jah A			- 8 ×
02038 02037 02038 02039	REACTION FORCES	8 MOME	3 ₩ ØM M PA NTS DEFAULT F	PRINTOUT		A an A	unit System	<рн н н н н н н н н н н н н н н н н н н	×
02040 02041 02042 02043	Node LC		FX	FY	FZ	MX	MY	MZ	
02044 02045 02046 02047	37 RC ENV~1	MAX MIN	123.2 -50.6	105.1 -65.3	4837.5 108.3	420.9 -473.7	385.9 -314.3	23.6 -24.5	
02048 02049 02050 02051 02052 02053 02053 02054 02055 02056	RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX Min	94.7 -25.0 41.5 25.0 51.9 57.9 31.1	78.4 -40.0 23.0 21.5 -4.7 24.5 50.8	4068.7 2717.8 3776.1 3675.5 3693.5 3876.6 3858.6	262.5 -341.0 -46.4 -34.1 103.4 -58.6 -196.1	279.0 -210.1 42.1 -27.4 89.9 111.5 -5.8	15.9 -17.3 -0.8 0.1 3.3 -1.7 -4.8	
02057 02058 02059 02060	38 RC ENV~1	MAX MIN	329.3 12.7	158.3 -178.8	12476.4 227.9	714.3 -693.2	724.7 -241.1	35.9 -37.3	
02061 02062 02063 02064 02065 02066 02067 02068 02069 02069 02070	RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX MIN	266.0 61.7 185.0 148.3 188.8 221.6 181.1	99.0 -128.9 -18.1 -21.9 -73.9 -14.3 37.7	10275.2 4180.7 8103.5 7226.0 8097.8 8981.0 8109.2	503.2 -482.8 13.7 34.8 262.5 -7.3 -235.0	557.4 -93.9 261.3 130.1 280.1 392.4 242.4	24.2 -26.3 -1.2 0.1 5.0 -2.5 -7.4	
02071 02072 02073	39 RC ENV~1	MAX MIN	174.3 -28.1	177.6 -148.6	6951.4 136.0	699.5 -746.7	459.5 -275.1	35.9 -37.3	
02074 02075 02076 02077 02078 02079 02080 02081 02082 02083	RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX Min	139.7 0.9 85.0 55.6 81.0 114.3 88.9	127.8 -99.9 16.9 13.4 -39.0 20.4 72.7	5714.2 3812.9 5381.1 5248.7 5454.9 5513.6 5307.4	460.4 -531.0 -41.3 -20.8 207.5 -61.9 -290.1	344.6 -167.1 108.7 -16.2 90.7 233.7 126.7	24.2 -26.3 -1.2 0.1 5.0 -2.5 -7.4	
02084 02085 02086	40 RC ENV~1	MAX MIN	127.4 -126.9	126.4 -48.0	7993.1 15.9	399.7 -492.7	531.4 -572.9	35.9 -37.3	
02088 02089 02090 02091 02092 02093 02094 02095 02096	RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX MIN	89.3 -88.7 0.3 -26.8 17.9 27.4 -17.2	98.5 -23.0 46.9 45.9 13.3 47.9 80.6	6339.9 4580.0 6180.5 6182.9 6059.1 6178.2 6301.9	227.5 -362.4 -82.6 -72.6 100.6 -92.6 -265.8	344.5 -408.0 -36.0 -144.6 39.2 72.6 -111.2	24.2 -26.3 -1.2 0.1 5.0 -2.5 -7.4	
02097 02098 02099	41 RC ENV~1	MAX MIN	236.0 -278.7	101.9 -130.0	12516.6 438.9	559.8 -515.8	885.2 -1024.9	58.6 -60.8	
02101 02102 02103 02104 02105 02106 02107 02108 02109	RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX Min	130.2 -200.9 -35.8 -109.0 -24.3 37.5 -47.3	56.0 -96.3 -25.0 -26.7 -71.4 -23.2 21.4	10443.9 4981.1 8731.4 9398.8 8473.6 8064.0 8989.2	398.1 -355.6 27.8 41.5 270.1 14.1 -214.5	517.6 -738.9 -119.3 -391.2 -73.9 152.6 -164.7	39.5 -43.0 -2.0 8.1 -4.1 -12.0	

그림 5.21 지지점들의 반력확인 (Service Load Set)

🃅 MIDAS	/Text Editor	- [RC1.an	1]														×	
🚰 <u>F</u> ile	<u>E</u> dit <u>V</u> iew	<u>W</u> indov	v <u>H</u> elp)												-	E X	
🗅 🖻	🖬 🖨 🖪		1		мя	12 €		1	% %	16	a•b	A -	́г 垂	- P		8	<u> ?</u>	
01128 01129 01130 01131	₽ BEAM ELEME	INT FORCE	S & MOME	NTS M	IN/MAX S	UMMARY I	BY PROF	PERTY	PRINT	OUT	Un	it Sys	stem :	kN , m			4	j
01132 01133 01134 01135	* LENGTH	: the le	ngth of	betwe	en two n	odes												
01136 01137 01138 01139	[SECTION N [SECTION S ** MAX	NAME : C1 SIZE] H:	, SECTI 1.3 B:1	on Id	: 101 ,	SECTIO	n shape	E : S	B]									
01140 01141	ELEM COM	LC		PT	AXI	AL SI	HEAR-y	S	HEAR-z	TOF	RSION	MOME	ENT-y	MOMENT-	z	LENGTH		
)1142)1143)1144)1145)1146)1146)1147)1148	55 AXL 55 SHY 55 SHZ 55 MTZ 55 MTZ	cLCB301 cLCB159 cLCB156 cLCB159 cLCB159 cLCB159	1 1 1 1 1		1970 -10576 -11368 -10576 -11368 -10576	.58.5.8 .9.58.5.8	169.6 456.8 111.3 456.8 111.3 456.8		117.4 294.6 497.2 294.6 497.2 294.6		99.9 52.9 52.8 52.8 52.8 52.9 52.8 252.9	14 24 14 24 14	557.7 483.4 419.1 483.4 419.1 483.4	881. 2274. 461. 2274. 461. 2274.	8 0 0 8	5.00 5.00 5.00 5.00 5.00 5.00		
01149	++ MIN																	
01151	ELEM COM	LC		PT	AXT	AL SI	HEAR-y	S	HEAR-z	TOF	RSTON	MOME	ENT-y	MOMENT-	z	LENGTH		
01153 01154 01155 01156 01157 01158 01159	55 AXL 55 SHV 55 SHZ 55 TOR 55 MTY 55 MTZ	cLCB175 cLCB211 cLCB208 cLCB211 cLCB208 cLCB208 cLCB211	1 1 1 1 1 1		-13162 -7108 -6316 -7108 -6316 -7108	.7 .3 .6 .3 .6 .3	-404.6 -420.1 -74.7 -420.1 -74.7 -74.7		-292.9 -293.5 -496.1 -293.5 -496.1 -293.5		248.0 249.2 -49.2 249.2 -49.2 -49.2 249.2	-10 -10 -20 -20 -10 -20 -10	346.5 381.7 317.4 381.7 317.4 381.7 317.4 381.7	-2164. -2195. -381. -2195. -381. -2195.	 2 4 5 4 5 4	5.00 5.00 5.00 5.00 5.00 5.00		
01161 01162 01163 01164	[SECTION N [SECTION S ** MAX	NAME : C1 SIZE] H:	, SECTI 1.2 B:1	on Id	: 102 ,	SECTIO	n shape	E : S	B]									
01165 01166	ELEM COM	LC		PT	AXI	AL SI	HEAR-y	S	HEAR-z	TOF	RSTON	MOME	ENT-y	MOMENT-	z	LENGTH		1
01167 01168 01169 01170 01171 01172 01173 01174	132 AXL 133 SHY 132 SHZ 210 TOR 132 MTY 133 MTZ	cLCB298 cLCB159 cLCB155 cLCB159 cLCB159 cLCB159	1 1 1 1 1		3760 -9387 -3558 -5258 -3558 -9387	22.02.0	20.2 364.1 110.6 224.9 110.6 364.1		210.7 255.3 776.5 409.2 776.5 255.3		28.4 390.5 232.8 418.6 232.8 390.5	; 2(2) 2)	539.8 752.4 019.5 396.2 019.5 752.4	66. 1114. 373. 615. 373. 1114.	5 1 0 0 1	4.50 4.50 4.50 4.50 4.50 4.50		
01175	** MIN FLEM COM	10		PT	AXI	AI SI	HFAR-v	S	HFAR-7	TOP	RSTUN	MOME	=NT-v	MOMENT-	7	ENGTH		
01178 01179 01180 01181 01182 01182 01183 01184 01185	132 AXL 132 SHY 210 SHZ 210 TOR 210 MTY 132 MTZ	cLCB172 cLCB175 cLCB175 cLCB171 cLCB211 cLCB171 cLCB175	 1 1 1 1 1		-15657 -12104 -12180 -6355 -12180 -12104	.5 .6 .6 .4	-81.1 -332.2 -174.3 -285.9 -174.3 -332.2		-454.4 -267.1 -758.8 -394.5 -758.8 -267.1		-66.0 376.2 240.6 413.2 240.6 376.2	-11 -6 -11 -9 -11 -1	139.8 526.4 785.0 903.1 785.0 526.4	-237. -1038. -467. -780. -467. -1038.		4.50 4.50 4.50 4.50 4.50 4.50 4.50		
01186 01187 01188 01189	[SECTION N [SECTION S ** MAX	NAME : C1 SIZE] H:	, SECTI 1'B:1	on Id	: 103 ,	SECTIO	n shape	E : S	B]									
01190	ELEM COM	LC		PT	AXI	AL SI	HEAR-y	S	HEAR-z	TOF	RSION	MOME	ENT-y	MOMENT-	z	LENGTH		
01192 01193 01194 01195 01196 01197 01198	288 AXL 289 SHV 288 SHZ 289 TOR 289 TOR 288 MTY 289 MTZ	cLCB298 cLCB159 cLCB191 cLCB159 cLCB156 cLCB156 cLCB159	 1 1 1 1 1	 	2435 -7339 117 -7339 -2500 -2500 -7339	.3 .5 .5 .5 .5 .5	26.0 350.6 128.8 350.6 13.4 350.6		244.0 257.0 677.2 257.0 589.2 257.0		24.3 296.2 174.6 296.2 61.0 296.2	 10 14	486.0 509.8 344.1 509.8 421.2 509.8	73. 747. 277. 747. 383. 747.	 7 7 6 7 5 7	4.00 4.00 4.00 4.00 4.00 4.00		

그림 5.22 부재력의 하중조합별 최대/최소값

	S/Text E	ditor - [RG	[1.anl]						1. 1.	
Eile E	<u>E</u> dit	<u>V</u> iew <u>W</u>	ndow	<u>H</u> elp						- 8 ×
			X 🖻		M 🛱 🗠	🖴 🗏 🦽	% % %	a•b A -'⊢	⊕ 🕫 🗣	
00829 00830 00831 00832 00833	° NODE	DISPLACEM	ent and	ROTATIONS	DEFAULT PRIM	1TOUT		Unit Syste	m : kN , m	_
00834 00835 00836	NODE	LC		UX	UY	UZ	RX	RY	RZ	
00837 00838 00839	424	RC ENV~1	MAX MIN	0.036 -0.030	0.042 -0.042	0.001 -0.008	0.0 -0.0	0.0 0.0	0.0 -0.0	
00840		RC ENV~2	MAX	0.026 -0.020	0.030 -0.029	-0.005 -0.007	-0.0 -0.0	0.0	0.0 -0.0	
00843 00844 00845 00846 00847 00848		cLCB76 cLCB77 cLCB78 cLCB79 cLCB80		0.003 0.009 0.000 -0.003 0.006	0.000 0.002 0.019 -0.001 -0.018	-0,006 -0,006 -0,006 -0,006 -0,006	-0.0 -0.0 -0.0 -0.0 -0.0	0.0 0.0 0.0 0.0 0.0	-0.0 -0.0 -0.0 0.0 0.0	
00849 00850 00851	425	i RC ENV∼1	MAX MIN	0.029 -0.023	0.042 -0.042	0.002 -0.010	0.0 -0.0	0.0 -0.0	0.0 -0.0	
00853 00854		RC ENV~2	MAX	0.021 -0.015	0.030	-0.004 -0.008	0.0 -0.0	0.0 -0.0	0.0	
00855 00856 00857 00858 00859 00860		cLCB76 cLCB77 cLCB78 cLCB79 cLCB80		0.003 0.010 0.003 -0.003 0.004	0.000 0.002 0.019 -0.001 -0.018	-0.007 -0.006 -0.007 -0.007 -0.007	0.0 0.0 -0.0 0.0 0.0	0.0 0.0 0.0 -0.0 0.0	-0.0 -0.0 -0.0 0.0 0.0	
00862 00863 00864	426	i RC ENV∼1	MAX MIN	0.027 -0.021	0.042 -0.042	0.001 -0.012	0.0 -0.0	0.0 0.0	0.0 -0.0	
00885 00886 00887 00888 00889 00870 00871 00871 00872 00873		RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX MIN	0.020 -0.014 0.003 0.010 0.004 -0.004 0.003	0.030 -0.029 0.000 0.002 0.019 -0.001 -0.018	-0.007 -0.010 -0.009 -0.009 -0.009 -0.009 -0.009 -0.009	-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0	
00874 00875 00876	427	' RC ENV~1	MAX MIN	0.033 -0.027	0.042 -0.042	0.001 -0.009	0.0 -0.0	0.0 0.0	0.0 -0.0	
00877 00878 00879 00880 00881 00882 00883 00884 00885		RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX	0.024 -0.018 0.003 0.011 0.007 -0.004 0.000	0.030 -0.029 0.000 0.002 0.019 -0.001 -0.018	-0.005 -0.008 -0.007 -0.007 -0.008 -0.008 -0.007 -0.007	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0	
00886 00887 00888	428	RC ENV~1	MAX MIN	0.036 -0.030	0.031 -0.031	0.000 -0.013	0.0 -0.0	0.0 -0.0	0.0 -0.0	
00890 00891 00892 00893 00894 00895 00896 00897		RC ENV~2 cLCB76 cLCB77 cLCB78 cLCB79 cLCB80	MAX MIN	0.026 -0.020 0.003 0.009 0.000 -0.003 0.006	0.022 -0.021 0.000 0.001 0.017 -0.000 -0.016	-0.007 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010 -0.010	-0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	0.0 -0.0 0.0 0.0 0.0 0.0 0.0	0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0	
00898 00899 00900 00901	429	I RC ENV~1	MAX MIN	0.029 -0.023	0.031 -0.031	0.001 -0.011	0.0 -0.0	0.0 0.0	0.0 -0.0	
00902 00903		RC ENV~2	MAX MIN	0.021 -0.015	0.022 -0.021	-0.006 -0.009	0.0 0.0	0.0 0.0	0.0 -0.0	

그림 5.23 지붕층 변위값 확인 (Service Load Set)

- 1. Main Menu의 Results > Text > Text Output 선택
- 2. Text Printout Wizard의 Add New Load Set 버튼 클릭
- Load Case / Comb Selection대화상자의 Output Load Set Name 입력란에 '부재력 Load Set' 입력
- 4. OK, 다음(<u>N</u>) > 버튼 클릭
- 5. Element Output Selection 대화상자의 Wall 선택 후, 🛄 버튼 클릭
- 6. ID 탭에서 Selected에 위치한 모든 요소번호 확인
- 7. Element Selection Detail 대화상자의 Wall ID 탭 클릭
- 8. C<> 버튼을 클릭하여 모든 Wall ID를 Unselected로 이동
- 9. Wall ID 에 '1'을 선택하고, 🔁 버튼을 클릭하여 Selected로 이동
- 10. oĸ , 다음(<u>N</u>) > 버튼 클릭
- 11. Displ. & React. Output Selection 대화상자의 Reaction 선택란에 '√' 표시
- 12. Reaction 선택란 우측의 📃 버튼 클릭
- 13. Node Selection Detail대화상자의 Reaction 탭에서 ID탭 확인 후

 <<<<>> 버튼 클릭
- 14. Unselected 입력란에 '44, 45, 47, 48, 57 to 63' 입력 후 엔터 🏽 (그림 5.24 참조)
- 15. 선택된 절점번호를 버튼 클릭하여 Selected로 이동
- 16. 확인 버튼 클릭
- 17. 다음(<u>N</u>) > 버튼 클릭
- 18. 마침 버튼 클릭
- 19. 코어부의 반력 확인
- 20. 벽부재의 부재력 확인

Node Selection Detail	X
ID Story Named Plane Group Unselected Selected I4 45 47 48 57to63 55 56 57 58 59 60 61 Filter: PreSel:	Select Output Type Description Image: Construction of the second secon
확인	취소 적용(<u>A</u>) 도움말

그림 5.24 코어부의 절점번호 선택

♀ 입력된 절점 번호는 Base
 의 코어부를 구성하는 절
 점 번호입니다.

MIDAS	/Text Editor - [RC	anl]						x
Eile	Edit View Wir	ndow <u>H</u> elp			CU 102 W			×
01457	⊨ ⇔ LQ, ⊢ P		079 p4 E2		• 74 74 <u>74</u>	^{a.p} A -r	⊕ (⊅ <>	
01458 01459	REACTION FORCES	S & MOMENTS DEFAU	ILT PRINTOUT			Unit System	∶kN, m	
01460								
01463	Node LU	۲۷ ۲۷	ΕΥ 	FZ	MX со	MY 	MZ	_
01465	944 9LCB1 9LCB2 aLCB3	405.1 429.4 171.0	137.2	2958.1 2971 0	23.7 52.0	104.5	4.3 5.0	
01467	gLCB3 gLCB4 gLCB5	195.3	393.3	2945.4 6216.7	70.5	31.6	8.6 -0.3	
01469 01470	gLCB6 gLCB6	521.9 302.5	489.0 350.3	7108.8 5151.9	3.2 3.6	-17.6 -56.2	-0.4	
01471 01472	gLCB8 gLCB9	309.8 645.5	-2.8 540.0	3296.0 7730.6	63.1 1.4	-4.3 25.6	1.6 -0.7	
01473 01474	gÉCB10 gÉCB11	638.2 879.1	893.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9586.5 9891.8	-58.1 8.3	-26.3 74.5	-2.3 0.3	
01475	9LCB12 9LCB13	903.3 645.0	582.3 969.5	9399.3 9863.2	26.2 55.4	89.3 1.9	4.0 4.6	
01478	gLCB14 gLCB15	68.9 68.9	: 838.4 174.0	9386.6 2990.7	73.0	-105.1	-0.9	
01480	9LUBIO 9LCB17	44.0 302.9	-79.2	3483.2 3019.3	-50.4	-119.8	-4.7	
01482 01483	gLCB19 gLCB19 gLCB20	124.1	184.2	2707.1 851.2	2.0	-49.5	0.2	
01484 01485	gLCB21 aLCB22	467.2		5285.7 7141 6	-0.2	32.3	-0.6 -2.1	
01486 01487	gLCB23 gLCB24	700.7 725.0	550.2	7447.0 6954.5	6.7 24.7	81.2 96.0	0.4 4.1	
01488 01489	gLCB25 gLCB26	466.7 490.9	803.4	7418.4 6941.8	53.8 71.4	8.6 23.0	4.8 8.4	
01490	gLCB27 gLCB28	-109.4 -133.7	7.9 141.9	545.9 1 <u>03</u> 8.3	-4.8 -22.8	-98.4 -1 <u>13</u> .1	-0.8 -4.5	
01493	gLCB29 gLCB30	124.6 100.4	-245.3	574.5 1051.1	-52.0 -69.5	-25.8 -40.1	-5.2 -8.8	
01495	gLCB31 gLCB32	328.5 408.3	310.1	4440.5 5553.1	1.U 2.3	-9.5	-0.2	
01497 01498	gLCB33 gLCB34 aLCB35	270.0 282.0 540.2	1 310.2 1 38.6 2 456 1	4001.4 3133.7 6544 9	48.9 1 4	-44.0 -4.9 18.1	1.2	
01499 01500	gLCB36 gLCB37	534.6 691.8	430.1 727.7 573.0	7972.5	-44.4	-21.8	-1.8	
01501 01502	gLCB38 gLCB39	708.8 528.0	479.2 750.2	7623.8 7948.5	18.9 39.3	59.8 -1.3	2.7 3.2	
01503	gLCB40 gLCB41	545.0 124.7	658.5 193.3	7614.9 3137.8	51.6 -1.7	8.7 -76.2	5.7 -0.7	
01505	gLCB42 gLCB43	107.7 288.6	287.1	3482.5 3157.8	-14.3 -34.7	-86.6 -25.4	-3.3 -3.8	
01508	gLCB44 gLCB45	271.6 196.6	107.9 237.1	3491.4 3448.7	-47.0 1.9	-35.5 -41.0	-6.3 0.1	
01510 01511	9LUB46 9LCB47	202.2 460.4		2021.1 5432.3	47.7 0.2	-1.1 21.9	-0.5	
01512 01513	9LUB48 9LCB49 al CPE0	454.0 612.0 620.0	0 054.6 499.9 1 406.1	6855.8 6511 1	-45.6 5.1 17.6	-10.0 53.3 63.6	0.2	
01514 01515	9LCB51 aLCB52	448.2	677.1	6835.8 6502.2	38.1 50 /	2.5 12.6	2.0 3.3 5.8	
01516 01517	gLCB53 gLCB54	44.9	120.2 1214.0	2025.1 2369.8	-3.0 -15.6	-72.4 -82.7	-0.6 -3.3	
01518 01519 01520	gLCB55 gLCB56	208.8 191.8	-57.0 34.8	2045.1 2378.7	-36.0 -48.3	-21.6 -31.6	-3.7 -6.3	
01521 01522 01523	RC ENV~1	MAX 903.3 MIN -133.7	969.5 -245.3	9891.8 545.9	73.0 -69.5	104.5 -119.8	8.6 -9.0	

그림 5.25 코어부의 반력확인

	S/Text	Editor	- [RC.an]									
Eile	<u>E</u> dit	View	Windo	w <u>F</u>	<u>H</u> elp			1				_ 8 >	ĸ
00741	⊌∉ ∞	\$ <u>[</u>].				M # :	요 역 💾	1 / 1/6 7/6 7/8	6 % ∣ a•b	A 🔁			% ⊣
00742 00743	'WALL	ELEME	NT FORC	ES DE	FAULT PRI	NTOUT			Uni	t System :	kN , m	-	
00744 00745 00746 00747	WL.ID		STORY	HT_	LC	PRT	AXIAL	SHEAR-y	SHEAR-z	TORSION	MOMENT-y	MOMENT-z _	_
00748 00749 00750 00751		1	12F	4	gLCB1	top Bot	141.0 141.0	0.0 0.0	99.3 99.3	0.0 0.0	137.3 239.6	0.0 0.0	
00752 00753					gLCB2	top Bot	135.8 135.8	0.0 0.0	69.3 69.3	0.0 0.0	171.6 154.0	0.0 0.0	
00755					gLCB3	TOP BOT	38.6 38.6	0.0 0.0	320.9 320.9	0.0 0.0	494.9 799.5	0.0 0.0	
00758 00759					gLCB4	top Bot	34.2 34.2	0.0 0.0	301.9 301.9	0.0 0.0	511.7 740.2	0.0 0.0	
00761 00762					gLCB5	top Bot	-628.3 -818.1	0.0 0.0	49.2 49.2	0.0 0.0	-103.5 93.4	0.0 0.0	
00764 00765					gLCB6	top Bot	-720.0 -882.7	0.0 0.0	68.1 68.1	0.0 0.0	-129.2 143.2	0.0 0.0	
00767 00768					9LCB7	TOP BOT	-706.6 -869.3	0.0 0.0	49.0 49.0	0.0 0.0	-107.7 88.4	0.0 0.0	
00770 00771					gLCB8	top Bot	-654.2 -816.9	0.0 0.0	-133.6 -133.6	0.0 0.0	96.0 -438.3	0.0 0.0	
00773 00774					gLCB9	top Bot	-597.3 -760.0	0.0 0.0	67.7 67.7	0.0 0.0	-120.3 150.6	0.0 0.0	
00776					gLCB10	top Bot	-649.7 -812.4	0.0 0.0	250.4 250.4	0.0 0.0	-324.1 677.3	0.0 0.0	
00779					gLCB11	TOP BOT	-510.9 -673.6	0.0 0.0	157.7 157.7	0.0 0.0	23.3 359.1	0.0 0.0	
00782					gLCB12	TOP BOT	-516.2 -678.8	0.0 0.0	127.7 127.7	0.0 0.0	57.5 273.6	0.0 0.0	
00785					gLCB13	TOP BOT	-613.3 -776.0	0.0 0.0	379.3 379.3	0.0 0.0	380.8 919.0	0.0 0.0	
00788 00789 00790					gLCB14	TOP BOT	-617.8 -780.4	0.0 0.0	360.2 360.2	0.0 0.0	397.7 859.7	0.0 0.0	
00791 00792 00793					gLCB15	TOP BOT	-793.0 -955.7	0.0 0.0	-40.9 -40.9	0.0 0.0	-251.3 -120.1	0.0 0.0	
00794 00795 00796					gLCB16	top Bot	-787.8 -950.5	$0.0 \\ 0.0$	-10.9 -10.9	0.0 0.0	-285.6 -34.5	0.0 0.0	
00797 00798 00799					gLCB17	TOP BOT	-690.6 -853.3	$0.0 \\ 0.0$	-262.5 -262.5	0.0 0.0	-608.9 -679.9	0.0 0.0	
00800 00801 00802					gLCB18	TOP BOT	-686.2 -848.9	0.0 0.0	-243.5 -243.5	0.0 0.0	-625.8 -620.6	0.0 0.0	
00803 00804 00805					gLCB19	TOP BOT	-458.6 -580.6	0.0 0.0	22.3 22.3	0.0 0.0	-60.3 29.0	0.0 0.0	
00806 00807 00808					gLCB20	TOP BOT	-406.2 -528.2	0.0 0.0	-160.3 -160.3	0.0 0.0	143.5 -497.7	0.0 0.0	
00809 00810					gLCB21	TOP BOT	-349.3 -471.3	0.0 0.0	41.0 41.0	0.0 0.0	-72.9 91.1	0.0 0.0	

그림 5.26 벽부재의 부재력 확인(Wall ID 1)

KBC2009를 적용한 철근콘크리트 골조와 전단벽을 가진 이중골조 시스템

midas Gen 2015

이 장에서는 해석결과를 이용하여 철근콘크리트 보, 기둥, 벽체, 기초의 단면설계 및 강도 검증 과정을 알아봅니다.

midas Gen에서는 다음과 같은 설계기준을 적용하여 철근콘크리트부재 자동설계를 수행할 수 있습니다.

한국콘크리트학회 콘크리트 구조설계기준(KCI-USD12, 토목/건축 통합기준) 한국콘크리트학회 콘크리트 구조설계기준(KCI-USD99, 03, 07 토목/건축 통합기준) 대한건축학회 극한강도설계법에 의한 철근콘크리트 구조계산기준(AIK-USD94) 미국 콘크리트학회 철근콘크리트 구조계산규준(ACI318-89, 95, 99) 대한토목학회 콘크리트표준시방서(KSCE-USD96)

철근콘크리트 부재에 대한 단면 설계 및 강도검증은 사용자가 지정한 범위 또는 해석모델에 포함되어 있는 전체 철근콘크리트 부재에 대하여 수행합니다.

이때, 단면설계 또는 강도검증은 각 철근콘크리트 부재의 단면이 부재 전길이에 대하여 일정한 단면형상을 가지는 철근콘크리트 부재에 대해서만 수행합니다.

부재의 양단부 또는 부재의 임의의 위치에서 단면의 모양이나 크기가 변하는 변단면 부재는 단면설계 또는 강도검증을 할 수 없습니다.

철근콘크리트 부재는 다음과 같은 방법으로 단면설계 또는 강도검증을 선택적으로 수행합니다.

➢ 자동설계(Concrete Code Design)

단면설계는 해석모델에 입력된 부재 단면치수 또는 사용자가 수정한 부재단면치수 와 철근콘크리트 부재 설계용 하중조합조건에 의하여 산출된 계수하중을 기준으로 최적의 소요 철근량을 산출하는 과정입니다. 즉, 부재의 단면치수만 결정되어 있고 철근배근에 대한 데이터가 없는 경우 수행합니다.

➢ 강도검증(Concrete Code Check)

강도검증 부재의 단면치수와 철근배근 데이터가 함께 입력된 경우에는 완전한 철근콘크리트 단면으로 간주하고, 이 단면에 대한 설계강도를 산출한 다음 해당부재의 소요강도와 비교 검증하는 과정입니다.

6-1 설계변수

midas Gen의 철근콘크리트 부재의 설계기능은 Design 메뉴에서 제공되며 본 예제에 서 사용되는 Design Parameter로는 *General Design Parameter*와 *Concrete Design Parameter*가 있습니다.

General Design Parameter는 구조재와 부재의 종류와 관계없이 설계과정에서 공통적 으로 사용되는 설계변수 등을 입력하고, Concrete Design Parameter는 철근콘크리트 부재의 설계과정에서 사용되는 설계기준이나 구조재료의 변경 그리고 부재단면 데이 터의 입력 또는 수정을 합니다. 자동설계에 적용할 설계변수를 입력합니다.

midas Gen에서는 Member Designation for Seismic Design 기능이 추가되어 건축구조 기준(KBC 2009)에 의한 특별지진하중 조합과 수직 지진력을 적용할 수 있습니다. 하중조합(Combinations)에서 설정한 Factor를 적용할 Member를 지정합니다.

► KBC 2009-0306.2.3 —

필로티 등과 같이 전체 구조물의 불안정성이나 붕괴를 일으키거나 지진하중 의 흐름을 급격히 변화시키는 주요 부재의 설계시에는 지진하중을 포함한 지 진하중조합에 지진하중(E) 대신 특별지진하중(Em)을 사용하여야 한다.

→ KBC 2009-0306.8.3 ------

평면비정형 유형 H-4 또는 수직비정형 유형 V-4에 해당하는 구조물의 불연속 벽 , 기둥 및 기타 부재는 0306.2의 특별 조합하중에 저항할 수 있도록 설계하여야 한다.

→ KBC 2009-0306.8.5

내진설계범주 'D'로 분류된 구조물의 수평내민보와 프리스트레스를 받는 수평 요소는 해당 하중조합에 추가하여 고정하중의 20% 이상에 해당하는 상향하중 에 저항할 수 있도록 설계한다.

철근콘크리트 부재의 General Design Parameter와 Concrete Design Parameter를 지정합 니다.⁹

- 1. Main Menu (M) d Design > General > General Design Parameter >
 - Definition of Frame 선택
- 2. X-Direction of Frame에 'Braced | Non-Sway' 선택
- 3. Y-Direction of Frame에 'Braced | Non-Sway' 선택
- 4. OK 버튼 클릭
- 5. 间 Front Veiw 클릭
- 6. 🛐 Select Window를 이용하여 1F, 2F 지정
- 7. 🍞 Activate, 🔲 Iso Veiw 클릭
- 8. Design > General Design Parameters > Seismic Load Combination type 선택
- 9. Assign Member 선택란에서 'for Special Seismic Loads' 선택
- 10. 🏋 Select Single 클릭
- 11. Element No. '36, 46to49, 51, 54'선택
- 12. Apply 버튼 클릭
- 13. 🍞 Activate All 클릭
- 14. 🕅 Top View 클릭
- 15. 属 Select by Polygon을 이용하여 수평내민보 선택
- 16. 🛅 Iso Veiw 클릭
- 17. Assign Member 선택란에서 'for Vertical Seismic Forces' 선택
- 18. Apply 버튼 클릭

● 설계변수를 입력하지 않
 으면 midas Gen에서 설정
 된 초기값이 적용됩니다.
 각 설계변수의 초기값은
 On-line Manual 참조

그림 6.1 횡구속 여부 설정

그림 6.2 1F, 2F 활성화

그림 6.4 특별지진하중 적용 부재 선택(수평 내민보)

- 1. Main Menu에서 Design > Design > RC Design > Design Code 선택
- 2. Design Code 선택란에서 'KCI-USD12' 확인
- 3. Apply Special Provisions for Seismic Design 0 $(\checkmark, \pm \lambda)$
- 4. OK 버튼 클릭
- 5. Main Menu에서 Design > Design > RC Design > Strength Reduction Factors 선택
- 6. Strength Reduction Factors에서 For Tensile Control(phi_t) 입력란에 '0.85', Member with Spiral Reinforcement(phi_c1) 입력란에 '0.7',

Other Reinforced Member(phi_c2) 입력란에 '0.65',

For Shear and Torsion(phi_v) 입력란에 '0.75'

OK	버튼 클릭

- 8. Main Menu에서 Design > Design > RC Design > Design Criteria of Rebars 선택
- 9. Design Criteria of Rebars 대화상자에서 For Beam Design의 Main Rebar에 'D22' 확인 위
- 10. Stirrups 선택란에서 'D10' 확인
- 11. Side Bar 선택란에서 'D13' 확인
- 12. OK 버튼 클릭

For Beam Design	
Main Rebar Stirrups Side Bar dT : 0	: 1012 Rebar : 1010 • Arrangement : 2 • : 1013 •
V Doubly Rebar k+Rhomax k: 1	✓ Consider Spacing Limit for Main Rebar Spliced Bars : ● None ● 50% ● 100%
For Column Desig Main Rebar Ties/Spirals do	n : D22 Rebar : D10 ■ Arrangement : Y: 2 : 0 m Z: 2 ☑ Consider Spacing Limit for Main Rebar Spliced Bars : ○ None ● 50% ○ 100%
For Brace Design Main Rebar Ties/Spirals do	D22 Rebar D10 Arrangement : Y: 2 m Z: 2 Consider Spacing Limit for Main Rebar Spliced Bars : ○ None ● 50% ○ 100%
For Shear Wall De	sign
Vertical Rebar Horizontal Rebar Boundary Element Boundary Element de : 0	: D13 Rebar : D10 PEND Rebar From : D10 Rebar : D10 P Rebar Space : 0.2 m m dw : 0 m
🗖 Material by Reb	ar Diameter Rebar Material
	Input Additional Wall Data,

Q Applied Special Provision

Main Rebar를 추가할 경우
 Rebar... 버튼을 클
 릭하여 Rebar Data를 추가
 할 수 있습니다.

6-2 보부재 설계

midas Gen에 내장되어 있는 한국콘크리트학회 콘크리트 구조설계기준 (KCI-USD12) 을 적용하여 보부재의 단면설계와 강도검증을 수행합니다.

입력된 설계변수를 기준으로 Main Menu에서 Design > Design > RC Design > Concrete Code Design > Beam Design을 선택하여 보부재의 단면설계를 수행합니다. Beam Design Result Dialog에서는 Member, 또는 Property 별로 단면설계 결과가 화면에 출력됩니다.

- 1. Main Menu에서 Design > Design > RC Design > Concrete Code Design > Beam Design 선택
- 2. Beam Design Result Dialog 대화상자의 >> 버튼 클릭(그림 6.6 참조)
- 3. Result View Option의 NG 클릭
- 4. Property ID 211에 '√' 표시하여 선택
- 5. Graphic,.. 버튼 클릭
- 6. Property ID 211 요약계산서에서 i, j단 휨강도비 NG 확인. (그림 6.7 ❶)
- 7. Property ID 211 요약계산서의 🔂 Close 버튼 클릭
- 8. Connect Model View에 '✓' 표시
- 9. Select All 버튼 클릭
- 10. Main Menu에서 Design > Design > RC Design > Design Criteria for Rebars by Member 선택
- 11. Main Rebar에 'D25' 선택
- 12. Stirrups에 'D13' 선택
- 13. Arrangement에 '3' 선택
- 14. Apply 버튼 클릭
- 15. Beam Design Result Dialog 대화상자의 Select All 버튼 클릭
- 16. Re-calculation 버튼 클릭
- 17. NG난 Property확인 후 << 클릭
- 18. Design Menu에서 Section For Design 선택
- 19. 222:WG2선택 후 Modify... 버튼 클릭
- 20. H:0.8, B:0.8 로 변경 후 OK 버튼 클릭
- 21. 같은 방법으로 223: WG3은 H:0.9, B:0.8, 422:WG2는 H:0.8, B:0.8, 423:WG3은 H:0.8, B:0.8, 511:RG1은 H:0.7, B:0.45, 215:G3A는 H:1.4, B:0.85 로 변경
- 22. Section For Design 대화상자 Close 버튼 클릭
- 23. Beam Design Result Dialog 대화상자 Close 버튼 클릭
- 24. 🛞 Unselect All 클릭
- 25. Design Menu에서 Concrete Code Design > Beam Design 선택

 휨강도 부족

 P: 정모멘트에 대한 휨강도 부족

 **V: 전단력에 대한 강도 부족

 NP*: 부모멘트, 정모멘트 에 대한 휨강도 부족

 *PV: 정모멘트, 전단력 에 대한 강도 부족

 N*V: 부모멘트, 전단력 에 대한 강도부족

 NPV: 부모멘트, 정모멘트 전단력에 대한 강도

부족

♀ N** : 부모멘트에 대한

KCI	KCI-USD12 RC-Beam Design Result Dia 🗖 💷 🗮 🌉									
- т	규준 : KCI-USD12 Unit : kN , m									
Sorted by OMember Property										
	MEMB		Sec	tion	fck	-		•		
- [SECT	SEL	Bc	Hc	fy	PO S	СНК			
	Span		bf	hf	fys	Ľ				
1	222		0.600	0.800	400000	М	ОК			
	3.0000	1	0.000	0.000	400000	J	N**			
	0		W	G3	24000.0	1	*PV			
	223		0.600	0.800	400000	М	**V			
	3.0000		0.000	0.000	400000	J	N*V			
	0		G1		24000.0	1	N**	Ξ		
	411		0.400	0.700	400000	M	ОК			
	10.200		0.000	0.000	400000	J	N**			
	0		G2		24000.0	1	ОК			
	412		0.400	0.700	400000	M	ОК			
	7.2000		0.000	0.000	400000	J	ОК			
	0		G	3	24000.0	1	ОК			
	413		0.600	0.800	400000	M	ОК			
	9.0000		0.000	0.000	400000	J	ОК			
	0		G	4	24000.0	1	ОК	-		
1										
Connect Model View										
Select All Unselect All Re-calculation										
	Graphic Detail Summary >>									
Option Option Detail Print Asition USPate Rebar										
	End I. Mid. End J. Close									

그림 6.6 Beam Design Result Dialog

 그림 6.6의 ●
 Graphic...
 버튼을 클릭하면 요약계산서가 나타나고, 사용자가

 선택한 Property별 설계결과를 단면의 배근 형상과 함께 확인할 수 있습니다.

 그림 6.6의 ●
 Detail...
 버튼을 클릭하면 사용자가 선택한 Member별 계산과

 정 및 상세결과를 Text 형식으로 확인할 수 있으며 fn.rcs File로 저장할 수 있습니다.

 그림 6.6의 ●
 Summary...

 버튼을 클릭하면 사용자가 선택한 Member별

 Property별 설계결과 요약을 Text 형식으로 확인할 수 있으며 fn. rcs File로 저장할 수 있습니다.

 이습니다.

그림 6.7 Property ID 211의 요약계산서출력

Concrete Code Design기능을 이용하여 단면설계 수행 시 적절하지 않는 부재가 발생한 경우, 본 예제와 같이 Design Menu에 Concrete Design Parameter>Design Criteria Rebar 를 선택하여 철근정보를 변경하거나 Design Menu에 Section for Design를 선택하여 해 당부재의 단면치수를 변경하여 재설계를 수행하여 충분한 강도를 확보하도록 설계합 니다.

Check Ratio가 1.0이내가 되면 설정된 설계조건(설계기준, 하중, 설계변수등)에 대하 여 충분한 강도를 확보하였다고 할 수 있겠습니다.
1. 모든 부재의 설계결과가 OK인 것을 확인 후 Result View Option의 All 선택

- 2. Select All 버튼 클릭
- 3. Summary... 버튼 클릭
- 4. 설계결과 요약 List 확인 후 🔀 버튼 클릭

5. 예(Y)	클릭 후 저징
---------	---------

그림 6.8 재설계된 Property ID 211의 요약계산서

그림 6.9 설계결과 요약 List

- 1. Sorted by Member 선택
- 2. Member 36에 '✓' 표시 후 Detail,... 버튼 클릭
- 3. Special Seismic Load Combination 이 적용된 것을 확인 후 창 닫기

그림 6.10 요소 6, 7, 8의 상세계산서 출력

6-3 보부재 강도검증

사용자가 철근정보 및 단면크기를 입력 또는 수정하여 미리 계산된 부재력에 따라 강 도검증을 수행합니다. ⁹

- 1. Main Menu에서 Design > Design > RC Design > Modify Beam Rebar Data
- 2. Modify Beam Rebar Data의 "Property 211" 선택
- 3. 'Same Main Rebar Size at Top and Bottom' 에 '√'표시
- 4. 'Same Main Rebar Size at I, M and J' 에 '✓'표시 해제
- 5. 그림 6.11 ●과 같이 Rebar의 단면 정보를 수정
- 6. Detail Figure에서 설정사항과 동일한지 확인
- 7. Add/Replace 버튼 클릭

그림 6.11 Modify Beam Rebar Data

- 강도검증시에는 사용자가 입력한 철근정보에 대하
 여 철근의 최소간격 등의 검토과정이 생략되므로
 사용자가 철근정보를 입 력할 때 유의하여야 합니
 다.
- Modify Beam Section Data
 기능은 강도검증시에만
 사용되는 기능입니다.

MIDAS

- 1. Modeling View Window에서 선택된 부재 "211 : WG1" 확인
- 2. Main Menu의 Design > Design > RC Design > Concrete Code Check > Beam Checking 선택
- 3. Beam Checking Result Dialog에 Property ID 211 강도검증 결과확인®
- 4. Select All 버튼 클릭
- 5. Graphic,.. 버튼 클릭
- 그림 6.12●에서 Modify Beam Section Data에서 수정된 Rebar 정보가 반영된 것을 확인
- 7. 🕀 Close 버튼 클릭
- 8. Beam Checking Result Dialog의 Close 버튼 클릭
- 9. 🛞 Unselect All 선택

그림 6.12 Modify Beam Rebar Data

Model Window상에서 선 택된 부재가 있으면 강도 검증시 해당부재에 대해 서만 단면설계 및 강도검 증을 수행하므로 유의해 야합니다.

6-4 기둥부재 설계

철근콘크리트 기둥부재 설계는 보부재 설계시 입력했던 설계변수가 동일하게 적용 됩니다.

- 1. Main Menu에서 Design > Design > RC Design > Concrete Code Design > Column Design 선택
- 2. Beam Checking Result Dialog 대화상자의 >>> 버튼 클릭
- 3. Result View Option 선택란에서 'NG' 선택
- 4. Connect Model View에 '√' 표시 ♥
- 5. Select All 버튼 클릭 후 Close 버튼 클릭
- 6. Main Menu에서 Design > Design > RC Design > Design Criteria for Rebars by Member 선택
- 7. Column 탭 클릭
- 8. Main Rebar에 'D25' 선택
- 9. Ties/Spirals에 'D13' 선택
- 10. Arrangement의 Y에 '4', Z에 '4' 입력
- 11. Apply 버튼 클릭
- 12. Main Menu에서 Design > Section > Section For Design 선택
- 13. 111:TC1 선택 후 Modify... 버튼 클릭
- 14. H: 1.6, B:1.2 입력 후 OK 버튼 클릭
- 15. 같은 방법으로 TC3 선택 후 H: 1.2, B:1.2 입력
- 16. OK 버튼 클릭

 None : 주철근 이음을 고 려하지 않은 철근 개수 계 산

> 50% : 주철근 반수이음을 고려한 철근 개수 계산

> 100% : 주철근 전이음을 고려한 철근개수

규준 : Ki Sorted b	ci-us y $\stackrel{\bigcirc}{\circ}$	D12 Member Property	U	nit: kN	, г	'n	Primary	/Sorting T ⊚ N	Option 1EMB			
MEMB	SE	Section	fck	fy	LC	Pu	Мс		VDahas	Vu		U.B.h.s.
SECT	L	Bc Ho	Height	fys	в	Rat-P	Rat-M	Ast	v-Rebar	Rat-V	AS-H	H-Rebar
201	1	1.000 1.00	0 5.0000	400000	2	0.800	0.417	0.0101	20-0-022	0.387	0.0003	2-010 @100
0	_	C2	24000.0	400000	_	9039.27	232.321	0.0000	04 7 000	414.419	0.0000	0.040.0470
202		0.900 1.00	0 4.5000	400000	2	0.794	0.672	0.0093	24-7-D22	0.468	0.0008	2-010@170
0	_	C2	24000.0	400000	2	7163.34	121.558	0.0070	19 6 000	376.057	0.0007	2 040 @470
203		0.800 0.80	0 4.0000	400000	2	0.877	0.752	0.0070	10-0-022	0.581	0.0007	2-010@170
0		C2	24000.0	400000	2	5524.87	99.5604	0.0054	14.5 022	331.996	0.0005	2 010 @170
204		0.600 0.80	0 4.0000	400000	2	0.897	0.763	0.0034	14-3-022	0.610	0.0005	2-010 @170
0		C2	24000.0	400000	2	3937.13	112.915	0.0054	14 5 D22	172.906	0.0007	2 010 @170
205		0.600 0.80	0 4.0000	400000	2	0.639	0.575	0.0034	14-3-022	0.373	0.0007	2-010 @110
0		C2	24000.0	400000	28	567.161	388.500	0.0039	10-4-022	220.381	0.0005	2-010 @170
206		0.600 0.60	0 4.0000	400000	20	0.837	0.823	0.0000	10-4-022	0.626	0.0005	2-010 @110
0		C3	24000.0	400000	27	6623.92	1205.10	0.0101	26-8-D22	549.275	0.0009	2-010 @160
301	-	1.000 1.00	0 5.0000	400000	- '	0.653	0.643	0.0101	20-0-022	0.583	0.0000	2-010 @100
0		C3	24000.0	400000	23	7529.48	513.030	0.0070	18-5-D22	300.162	0.0007	2-010 @170
302	-	0.800 0.80	0 4.5000	400000		0.922	0.897	0.0070	100022	0.469	0.0001	2.010 @110
0	Г	C3	24000.0	400000	27	4723.35	442.702	0.0070	18-5-D22	363.076	0.0007	2-D10 @170
303	1	0.800 0.80	0 4.0000	400000		0.604	0.607	5.00.0		0.587		2010 @110
0		C3	24000.0	400000	27	3536.09	390.474	0.0054	14-4-D22	274.081	0.0007	2-D10 @170
304		0.600 0.80	0 4.0000	400000		0.683	0.674			0.612		
0		C3	24000.0	400000	27	2495.01	378.383	0.0054	14-4-D22	254.941	0.0007	2_010 @170
✓ Conn Selec	ect M :t All	lodel View Unsele	ct All	Re-calc	ulatio	n	- Result '	View Opt	ion NG			
Graph	nic	Deta	il] [S	ummary] [<<		U UIK	0 Ha			

그림 6.13 Column Design Result Dialog

- 1. Main Menu에서 Design > Design > RC Design > Concrete Code Design > Column Design 선택
- 2. 적절한 단면성능을 가진 것을 Result View Option의 'All'을 선택하여 확인
- 3. Connect Model View에 '√'표시
- 4. Property ID '104, 105' 선택
- 5. Modeling View Window에 반영된 것을 확인 (그림 6.14 참조)
- 6. Draw PM Curve,.. 버튼 클릭
- 7. Member No 선택란에서 '445' 선택 (그림 6.15 참조)[®]
- 요소번호 445의 2방향 소요모멘트를 적용한 PM 상관도를 마우스로 드래그 하여 View Point를 조정하여 확인
- 9. 그림 6.17 ❶의 Print Result 버튼 클릭
- 10. 요소축력 및 2방향 소요모멘트 Mny, Mnz를 적용한 PM 상관도 결과값 출력
- 11. 모든 대화창 닫기

그림 6.14 Connect Model View

요소번호 319는 Property
 ID 104중에 축력과 휨모멘
 트비가 가장 큰 값을 나타
 내는 요소를 나타낸 것입
 니다.
 요소번호 529도 동일한 경
 우에 해당합니다.

그림 6.15 PM Curve Dialog

그림 6.16 PM 상관도 결과값 출력

기둥부재의 강도검증은 보부재의 강도검증 절차와 동일하며,

Main Menu의 Design > Design > RC Design > Concrete Code Check > Column Checking 를 선택하여 수행합니다.

6-5 전단벽부재 설계

일반적으로 전단벽은 다음과 같은 방법으로 단면설계를 수행합니다.

- 전단벽체의 부재력을 산출하기 위하여 구조해석 모델을 작성하며, 전단벽벽은 실제의 구조체와 동일한 모양을 가지는 T-형, I-형, L-형 등과 같은 형태로 입력합니다.
- 현재의 전단벽 설계방법은 일자형 직사각형 단면인 경우에만 단면설계가 가능하므로 T-형, I-형, L-형 등과 같은 형태를 몇 개의 일자형, 직사각형단면 전단벽 부재로 구분하여 입력합니다.
- 구조해석을 수행하여 일자형으로 구분된 각각의 전단벽 부재별로 부재력을 산출합니다.
- 산출된 부재력을 이용하여 전단벽 단면의 배근방법(철근규격 및 배근간격)을 결정합니다.

 ● 설계방법에 대한 자세한 설명은 On-line Manual참 조 전단벽의 설계 방법은 보강철근의 설계방법에 따라 다음과 같이 구분하여 사용자가 선택하여 적용할 수 있습니다.

Method-1

벽체 전길이에 대하여 등간격으로 배근하는 방법 (단부보강 철근이 없음)

Method-2

벽체 전길이에 대하여 등간격으로 배근되어 있다고 가정하고, 소요철근량을 산출한 다음 단부 및 중앙부의 철근을 배근하는 방법

Method-3

벽체 양단부에 배근한 철근이 축력(Pu)과 휨 모멘트(Mu)를 모두 부담하는 것으로 가정 하여 산출된 소요 수직철근량을 단부에 배치하고, 나머지 중앙부 구간은 전단력에 의하여 산출되는 철근량으로 배근하는 방법

Method-4 설계방법2와 동일하고, End Bar가 2EA부터 배치되는 방법

본 예제에서는 Method-3을 적용하여 전단벽 설계를 수행합니다.

1. 🛞 Unselect All 클릭

0K

- 2. Main Menu에서 Design > Design > RC Design > Design Criteria for Rebar 선택
- 3. For Shear Wall Design의 Vertical Rebar 선택란 우측의 Rebar... 버튼 클릭
- 4. 'D10, D13' 철근에 '√' 표시하고, OK 버튼 클릭
- 5. Horizontal Rebar 선택란의 'D10' 확인
- 6. End Rebar From 선택란의 'D13' 선택
- 7. 그림 6.19 ❶의 de 입력란에 '0.05', dw 입력란에 '0.05' 확인 [®]
- 8. Input Additional Wall Data,,, 버튼 클릭
- 9. End Rebar Design Method에서 'Method-3' 선택

버튼 클릭 🖗

- 10. Spacing of Vertical Rebar, Spacing of Horizontal Rebar를 확인한 후
- 11. Design Criteria of Rebar 대화상자의 OK 버튼 클릭
- 12. '설계결과가 삭제됩니다. 계속할까요?'메시지 확인 후, 🦳 예(Y) 버튼 클릭
- 13. Main Menu에서 Design > Design > RC Design > Modify Concrete Material 선택
- 14. Material List에서 6번 Wall(1~4F)선택
- 15. Rebar Selection의 Code에 'KS01(RC)'선택
- 16. Grande of Main Rebar에 'SD400'선택
- 17. Grande of Sub-Rebar에 'SD400'선택
- 18. Concrete Materials Selection의 Code에 None선택
- 19. Sepecified Compressive Strength에 '40000'입력
- 20. Name 입력란에 Wall(1~4F)입력
- 21. Modify , Close 버튼 클릭

- ♀ de, dw 입력란에 초기값을
 *0'으로 입력할 경우 프로
 그램 내부에서 자동고려
 하여 5.08cm(2.0 in)로 자
 동설계 하게 됩니다.
- ♀ 보, 기둥부재의 경우 피복
 두께의 범위를 5.08cm (2.5
 in) ≤ do ≤ 6.35cm (3 in)로
 합니다.
- 수직철근의 배근간격은 사용자가 적용하고자 하
 는 배근간격을 최대 5개 선택할 수 있습니다.

 □ 그림 6.20 ●의 Design of Out-of-plane Bending은 벽 체의 약축방향 휨에 대한 설계 여부를 선택하는 Option입니다. 해석모델에서 벽요소를 면외강성을 고려하는 Plate타입으로 해석한 경 우에는 체크해서 면외방 향 부재력에 대해서도 설 계를 진행해야 합니다.

Design Criteria for Rebars
For Beam Design Main Rebar : D22 Stirrups : D10 Side Bar : D13 dT : 0 m dB
✓ Doubly Rebar ✓ Consider Spacing Limit for Main Rebar k+Rhomax Spliced Bars : ○ None ● 50% ○ 100% k : 1 1
For Column Design Main Rebar : D22 Rebar Ties/Spirals : D10 Arrangement : Y: 2 do : 0 m Z: 2
For Brace Design Main Rebar : D22 Rebar Ties/Spirals : D10 Arrangement : Y: 2 do : 0 m Z: 2 ✓ Consider Spacing Limit for Main Rebar Spliced Bars : ● None ● 50% ● 100%
For Shear Wall Design Vertical Rebar : D10,D13 Rebar Horizontal Rebar : D10 - End Rebar From : D13 - Boundary Element Rebar : D10 - Boundary Element Rebar Space : 0,2 m
de : 0,05 m dw : 0,05 m Material by Rebar Diameter Rebar Material Input Additional Wall Data,
OK Close

그림 6.17 Design Criteria of Rebar

Spacing of Wall	Hebars	1	
Spacing of Vertic	al Rebars : @1	00,@150,@200,0	@300,@400 Space.
Spacing of Horiz	ontal Rebars : Fro	m 0,05	m
End Rebar Desi	gn Method		
Not Used	- 💿 Method-1		
Auto Calculation	: 💿 Method-2	Method-3	Method-4
Specing of End	Bebar		
End Rebar Q'tv	= 4 End Reb	ar Qʻtv = 6	End Rebar Q'tv >= 8
	╡║╷╼		
	<u>-</u>		
de Dist1		Dist 2	de Dist
Dist1 + 0.2			Di-+2 : 0.1
Distri 0,5	III Distz . u	.15	Dists . U.I

그림 6.18 Input Additional Wall Data

벽체 배근 형태를 동일하게 적용할 벽체요소들을 조합하여 Wall Mark를 부여합니다.

Wall Mark를 수정하고자 하는 경우에는 부여된 Wall Name을 선택하고, Operation의 Modify탭을 이용하여 Wall Mark Data를 수정할 수도 있습니다.

					6 MAR		Navdal Inford	
C North	Structure Node	Firment Properties	Boundary Load	d Analysis Results Push	over Design Overy Tools MO	DS Module	wodel view)	0 Hein • ×
General Design Pararteter -	KSSC-LSD09 * KSSC-LSD09 *	KCI-USDE2 × In RC Design × ↔ Meshed Design *	ABK-SRC2K * R. SRC Design *	양국 Displacement Optimal Design 오늘 Section for Design	Sty Steel Design Ety Concrete Design Ety SRC Design SRC Design	Perform Batch Design		
General		Design	10.0.011	Section	Design Result Design Forces	Eaton -		
The Manual			194 94 24 281 18	ii k				
General Steel	Concrete SRC							
Modify Wall Ma	rk 🔹							
Wall Mark								. 642
Name : W3								
Wall ID, List								
Oneration							W2	W2 🔒
Add	Audity Delete							
No. 14								Q.
W1 1,5	.8						W1	°.
W2 2.3 W3 9,1	4,6.7							WI 🚊
							w2	WI 🗇
	Close							4
							W1	-
								<u>_</u>
			W3 W3	W3 W3			W2	W2
		ģ						
			>					
		Message Window	v					* x
								<u>^</u>
Tree Menu Task	Pane	>> 	ommand Message & J	Analysis Message				
For Help, press F1			- Inde A				None: U:0, 10.2, 42 G: 0, 10.2, 42	4N • m • 🔶 😂 🕨 non • 😰 🚺 0 ; / 2 🚎

그림 6.19 Wall Mark 데이터 입력

₩all ID 입력시 Wall ID List 입력란을 마우스로 한 번 클릭하여 마우스 Editor 를 활성화 후, 입력할 Wall ID를 화면상에서 마우스 로 클릭하여 입력할 수도

6-6 전단벽부재 설계결과 확인

- 1. Main Menu에서 Design > Design > RC Design > Concrete Code Design > Wall Design 선택
- 2. Wall Design Result Dialog에서 Wall ID별 설계결과 확인
- 3. Select All 버튼 클릭
- 4. Graphic... 버튼 클릭
- 그림 6.21 ●의 단면번호 선택란에서 원하는 단면번호를 선택하여 벽체설계 결과 및 배근형태 확인
- 6. 🕀 Close 버튼 클릭

Ŧ	규준 : KCI-USD12 (Method 3) Unit : kN , m Primary Sorting Option													
S	Sorted b	у 🔘	Wall ID + Wall ID (1	Story MID)		Sort Res	ult	2	WID () Wall Ma	ark			
ſ	WID	SE	Wall	Mark	fck	fy	Ratio	Du	Мс	Vu	As-V	V-Rebar	End-Rebar	Ŀ
ľ	Story	L	Lw	HTw	hw	fys	Rat-V	Pu	LCB	LCB	As-H	H-Rebar	Bar Layer	1
ľ	1	_	W	/1	24000.0	400000	0.944	0547.05	14680.9	3333.64	0.0006	D13 @400	24-D13 @100	1
ľ	1F		7.2000	5.0000	0.2000	400000	0.977	2517.25	48	48	0.0007	D10 @170	Double	1
I	2	_	W	12	24000.0	400000	0.977	4040.7	1735.10	1082.70	0.0006	D13 @400	12-D19 @100	1
ľ	1F	-	3.0000	5.0000	0.2000	400000	0.986	-1042.7	48	43	0.0006	D10 @200	Double	1
ľ	3	-	W	12	40000.0	400000	0.724	4005 70	2581.03	583.645	0.0006	D13 @400	4-D13 @300	1
ľ	1F		3.0000	5.0000	0.2000	400000	0.623	1005.79	44	43	0.0005	D10 @280	Double	1
I	4	_	W	12	24000.0	400000	0.918	242.04	3025.29	1217.79	0.0007	D10 @200	14-D19 @100	1
ľ	2F	-	3.0000	4.5000	0.2000	400000	0.987	-243.04	48	48	0.0009	D10 @160	Double	1.
ľ	5	_	W	/1	24000.0	400000	0.967	4000.07	4727.83	781.896	0.0006	D13 @400	12-D13 @100	11
ľ	1F		4.8000	5.0000	0.2000	400000	0.575	1009.97	48	47	0.0005	D10 @280	Double	1
I	6	_	W	12	24000.0	400000	0.947	1702.5	2460.48	1114.65	0.0006	D13 @400	14-D22 @100	1
ľ	1F	1	3.0000	5.0000	0.2000	400000	0.974	-1723.5	47	43	0.0009	D10 @150	Double	1
ľ	7	_	W	12	24000.0	400000	0.915	1265.0	3332.32	1586.65	0.0008	D13 @300	16-D22 @100	1
ſ	1F		3.0000	5.0000	0.2000	400000	0.942	-1305.9	48	48	0.0013	D10 @90	Double	11
ſ	8	E	W	/1	24000.0	400000	0.966	2000.20	16088.3	4192.85	0.0013	D13 @200	26-D13 @100	1
ſ	2F	-	7.2000	4.5000	0.2000	400000	0.954	2000.30	47	47	0.0013	D10 @100	Double	1
ſ	9	Г	W	13	40000.0	400000	0.938	4765.00	14794.2	3489.41	0.0013	D13 @200	12-D13 @100	1
ſ	2F	- L	6.0000	4.5000	0.2000	400000	0.984	4733.23	23	23	0.0011	D10 @130	Double	1
I	10	_	W	13	40000.0	400000	0.383	6140.90	7412.07	1809.84	0.0006	D13 @400	4-D13 @300	
ſ	3F		6.0000	4.5000	0.2000	400000	0.623	0140.00	23	23	0.0005	D10 @280	Double	ŀ
	Conn Sele	ect M ct All	odel Viev	w Iselect A	II F	Re-calcu	ation	F	lesult Vie	w Option OK i in f	٧G			
n	Grap	hie		Dotoil		moreoru		- -		01				

그림 6.20 Wall Design Result Dialog

Preview Window	and the second sec	- X
1, 1F 🚽 🖨 Print 🖨 Pr	rint All 📲 Close 📕 Save	
1. Design Condition		
Design Code : KCI-USD12		
Wall ID : 1 (Wall Mark : W1)		
Story-PM, Shear Story	9.0F	
Material Data : fck = 24000, fy = 400000,), fys = 400000 KPa	
Wall Dim. (Length*Thk): 7.2*0.2 m		••• =
Vertical Rebar : D13 @400 (AsV = 0.0006:	i3 m²/m) +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1 +0.1	↓ ^{0.1} ↓
End Rebar : 24-D13 @100		
2. Applied Loads		
Load Combination : 48		
Pu = 2517.25 kN	2220 141	
Moy = 14680.9, Mcz = 0.00	JUUU KN-M	
3. Axial Forces and Moments Capa	acity Check	
Concentric Max. Axial Load	= 26616.7 KN	
Major Axis Dosign Axial Load Strongth (Pny	= 2697 54 kN	
Axial Ratio Pu/oPnv	= 0.933 < 1.000 0.K	
Design Moment Strength φMny	= 15546.6 kN-m	
Moment Ratio Mcy/φMny	= 0.944 < 1.000 0.K	
Minor Axis		
Design Axial Load Strength	- 0.000 < 1.000 0.V	
Axial Ratio Pu/oPnz	= 0.000 < 1.000 0.K	
Moment Ratio Mcz/@Mnz	= 0.000 < 1.000 0.K	
4. P-IVI Interaction Diagram		

그림 6.21 벽체설계결과 및 배근형태 (요약 계산서)

- 1. 그림 6.20 0의 'Wall ID + Story' 선택
- 2. Wall ID 1번의 1층 벽체를 선택하고, Detail... 버튼 클릭
- 3. 상세계산서를 통해 벽체 설계과정 및 결과 확인
- 4. 닫기(🔀) 버튼 클릭
- 5. 상세계산서 파일저장
- 6. Draw PM Curve,... 버튼 클릭
- 7. PM curve Dialog에서 PM 상관도 확인
- 8. Close 버튼클릭

그림 6.22 벽체설계의 상세계산서

그림 6.23 PM Curve Dialog

Wall Mark 별로 분류하여 fn.rcs File로 저장하여 출력할 수 있습니다.

6-7 Wall Mark별 설계결과 출력

- 1. Wall Design Result Dialog의 Sort Result... 버튼 클릭
- 2. Sorted by 선택란에 'Wall Mark' 확인 (그림 6.26 ❶ 참조)
- 3. List for Selecting 선택란에서 'W1, W2' 선택 *
- 4. -> 버튼 클릭
- 5. Sorting Story Options 선택란에서 'Descend'확인 *
- 6. Select All 버튼 클릭 9
- 7. Summary Result Output,.. 버튼 클릭
- 8. Wall Mark별 설계 결과 확인
- 9. 닫기(🔀) 버튼 클릭
- 10. 경로를 지정하여 Wall Mark 별 설계결과를 'fn.rcs' 형태로 저장

Wall Result Sorting Di	alog			X
Sort by Wall Mark Wall ID List for Selecting	Result Unit ● N, mm ● kgf, cm ● lb, in List for Printing	– Sortin © As © De 2	g Story Opti cend scend	on
W1 W2	W1 W2	SE	Story	
ŴŜ	-> <-		Roof 12F 11F 9F 8F 7F 6F 5F 4F 3F	E
Summary Result	Output		Select All	
Summary Rebar (Quantity Close		Inselect All	

그림 6.24 Wall Result Sorting Dialog

- ♀ 여러 개의 Wall Mark를 선 택할 시에는 키보드의 Ctrl 키를 누른 후 마우스로 원 하는 Wall Mark를 선택합 니다.
- Sorting Story Options의
 'Ascend, Descend'는 증정
 렬 방식을 나타냅니다.
- □ 그림 6.23 에서 사용자
 가 출력을 원하는 층을
 선택할 수 있습니다.

그림 6.25 Wall Mark별 설계 결과

	/Text Editor - [RC.rcs]	
🚰 <u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>W</u> indow <u>H</u> elp	_ 8 ×
🗋 🗅 🚔	▋᠊ᢒᠣ᠌҇҇҇҇҇҇҇ ҇҇҇ ҇ ҇	🖻 🗆 🖶 🧣
00001		
00002	midas Gen - RC-Wall Design [KCI-USD12] Method 3 Gen 2015	-
00004		
00006		
80000 80000 90000	+=====================================	
00010	+	
00012 00013 00014 00015 00016 00017 00018	Based On KCI-USDIE, KCI-USDI9, ICI-USDI9, KCI-USDI9, Based On KCI-USDI6, KCI-USDI9, ICI-USDI9, KCIC-USD96, AIK-USD94, AIK-WSD2K, ACI318-11, ACI318-08, ACI318-05, ACI318-02, ACI318-19, ACI318-95, ACI318-99, BB50010-10, BB50010-02, BSS110-97, Eurocode2:04, Eurocode2, CSA-A23, 3-94, AIJ-WSD99, IS456:2000, TWILISD100	
00019	(c)SINCE 1989	
00020 00021 00022	+	
00023	+	
00025		
00026	den 2015 +=========+	
00028	* DEFINITION OF LOAD COMBINATIONS WITH SCALING UP FACTORS	
00030	ICB C Loadraco Namo(Factor) + Loadraco Namo(Factor) + Loadraco Namo(Factor)	
00032		
00034 00035 00038 00037 00038 00049 00041 00042 00044 00044 00044 00045 00046 00046 00047 00048 00049 00051 00051 00053	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ţ
кеаду	Ln 17 / 692 , Col 130	

그림 6.26 Wall ID별 설계 결과

6-9 전단벽부재 강도검증

- 1. Main Menu에서 Design > Design > RC Design > Modify Wall Rebar Data 클릭
- 2. Modify Wall Rebar Data의 Wall ID 1, Story 1F이 선택된 것을 확인
- 3. 그림 6.27 ●과 같이 Rebar의 단면 정보를 수정
- 4. Add/Replace 버튼 클릭
- 5. Design Menu의 Concrete Code Check > Wall Checking 선택
- 6. Select All , Graphic,.. 버튼 클릭
- 7. 그림 6.28 ●의 변경된 Rebar 정보 및 강도검증 결과 확인
- 8. 🔂 Close 버튼 클릭
- 9. Wall Checking Result Dialog의 Close 버튼 클릭

wan ib	Wall Mark	Start Story	End Story	Bar
1	W1	1F	Roof	In
2	W2	1F	Roof	-
3	W2	1F	Roof	-
4	W2	1F	Roof	-
5	W1	11-	Hoot Reaf	-
5	₩2 ₩2		Roof	-
, 8	₩2 ₩1	1F	Boof	_
9	W3	1F	Boof	_
10	W3	1F	Roof	-
11	W3	1F	Roof	-
Create Sub	Wall ID			
Create Sub Story : 1F	Wall ID	- (▼ Propert v	
Create Sub Story : 1F Rebar	Wall ID	- [Property	IPabar
Create Sub Story : TF Rebar Vertical	Wall ID V Data D13 @ 356		Property d Rebar , Vertica	I Rebar
Create Sub Story : IF Rebar Vertical Horizontal	Wall ID 		Property d Rebar , Vertica	I Rebar
Create Sub Story : IF Rebar Vertical Horizontal	Wall ID		Property d Rebar , Vertica	IRebar
Create Sub Story : IF Rebar Vertical Horizontal V End 2	Wall ID	0 Wall F dw Er 0 0	Property d Rebar , Vertica	IRebar
Create Sub Story : IF Rebar Vertical Horizontal End 2 BE Horizonta	Wall ID	0 0 0 0 0 0	Property d Rebar, Vertica eDist vDist	I Rebar
Create Sub Story : IF Rebar Vertical Horizontal End 2 BE Horizonta	Wall ID 	0 0 0 0 0	Property d Rebar, Vertica eDist vDist	I Rebar
Create Sub Story : IF Rebar Vertical Horizontal End 2 BE Horizonta Concrete Fact	Wall ID 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Property d Rebar, Vertica eDist vDist : 0.05 , (I Rebar
Create Sub Story : IF Rebar Vertical Horizontal E E Horizonta Concrete Fact Use Model	Wall ID ~ Data ~ D13 @ 35 D10 @ 28 D13 @ 10 D10 @ 20 ato Center of ReThickness Contraction		Property d Rebar, Vertica eDist vDist : 0,05 , 0	1 Rebar

그림 6.27 Modify Wall Rebar Section

MIDAS

Preview Window		
1, 1F 🔹 🞒 Prin	🎒 Print All 📲 Close 📕 Save	
1. Design Condition Design Code : KCI-USD12 Unit System : kN, m Wall ID : 1 (Wall Mark Story : 1F (Height = Material Data : fok = 40000, Wall Dim. (Length*Thk): 7.2*0.2 Vertical Rebar Vertical Rebar : 24-D13 @350 (#	W1) im) y = 400000, fys = 400000 KPa V = 0.00072 m²/m)	110.10.10.110.110.11
2. Applied Loads Load Combination : 48 Pu = 2575.09 kN Moy = 14327.2, Mcz 3. Axial Forces and Mome	= 0.00000 kN-m ts Capacity Check	
Concentric Max. Axial Load	φPn-max = 26616.7 kN	
Design Axial Load Strength Axial Ratio Design Moment Strength Moment Ratio Minor Axis	φPny = 2880.01 kN Pu/φPny = 0.894 < 1.0000.K φMny = 16082.8 kN-m Mcy/φMny = 0.891 < 1.0000.K	
Design Axial Load Strength Axial Ratio Design Moment Strength Moment Ratio	φ Pnz Pu/φPnz = 0.000 < 1.000 0.K φMnz Mcz/φMnz = 0.000 < 1.000 0.K	
4. P-M Interaction Diagram	m	

그림 6.28 강도검증 요약계산서