

Release Note

Release Date : December 2018

Product Ver. : Civil 2019 (v2.1)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and

Engineering

Enhancements

1. 2. 3. 4 5. 6 7 8. 9.

11

1.	Material Database of Australia and New Zealand	 3
2.	Precast Concrete Girder Section Database of Australia and New Zealand	 4
3.	Tendon Template for Australian Precast Girder	 7
4.	Tendon Template for New Zealand Precast Girder	 8
5.	Fatigue Vehicle to AS 5100.2	 9
6.	Load Combination to AS 5100.2: 2017	 10
7.	Prestressed Concrete Girder Design to AS 5100: 2017	 11
8.	Serviceability Limit State Check for Plate Beam/Column Design to EN 1992-2	 13
9.	Fatigue Load Combination for Steel Composite Girder Design to Eurocode	 15
10.	Military Load Classes	 16
11.	Steel Member Design to CSA-S6-14	 18
12.	Reinforced Concrete Member Design to CSA-S6-14	 19
13.	Plate Beam and Plate Column (1D) Checking to Russian SNiP and SP	 20
14.	Steel Section Database Update to IS-12778:2004	 22
15.	Steel Composite Design to IRC-22:2015	 23
16.	Plate Beam and Plate Column (1D) Design to IRC 112:2011 Code	 24 🗸 🚽

1. Material Database of Australia and New Zealand

- Steel: AS/NZS 3678: 2016, AS/NZS 3679.1: 2016, AS/NZS 4672.1: 2007
- Concrete: AS 5100.5: 2017
- Properties > Material

Concrete

Concrete		
Standard	AS17(RC)	\sim
	Code	\sim
DB	C20	\sim
	C20 C25 C32 C40 C50 C65 C80 C100	
	AS 5100.5: 2017	

2. Precast Concrete Girder Section Database of Australia and New Zealand

Australia precast plank girders

Properties > Section

Section Data	× Select PSC DB ×
Section Data DB/User Value SRC Combined PSC Tapered Composite Steel Girder Section ID 1 Image: PSC-Value Image: PSC-Value <t< th=""><th>X Select PSC DB X Code AS Type AS-Plank-Girder Select DB Select PSC DB X 1:Span-7m Select PSC DB X 2:Span-8m 3:Span-9m 4:Span-10m 5:Span-11m 6:Span-12m 1:Span-7m 6:Span-12m 7:Void-Span-13m 3:Span-9m 8:Void-Span-15m 3:Span-11m 3:Span-9m 9:Void-Span-15m 4:Span-10m 5:Span-11m</th></t<>	X Select PSC DB X Code AS Type AS-Plank-Girder Select DB Select PSC DB X 1:Span-7m Select PSC DB X 2:Span-8m 3:Span-9m 4:Span-10m 5:Span-11m 6:Span-12m 1:Span-7m 6:Span-12m 7:Void-Span-13m 3:Span-9m 8:Void-Span-15m 3:Span-11m 3:Span-9m 9:Void-Span-15m 4:Span-10m 5:Span-11m
Param. for Design Asz 0.00000e+000 m^22 T1 0 m Ixx 0.00000e+000 m^44 T2 0 m Iyy 0.00000e+000 m^44 Iyy 0.00000e+000 m^44 Izz 0.00000e+000 m^44 BT 0 m Cyp 0.0000 m Thk. for Torsion(min.) 0 m Czp 0.0000 m Qyb 0.0000 m ² ✓ ✓	10:Void-Span-16m 11:Void-Span-17m 12:Void-Span-18m 9:Void-Span-17m 12:Void-Span-18m 10:Void-Span-18m 10:Void-Span-17m 10:Void-Span-18m
Warping Check Auto User Shear Check Position Qy Auto Thk. for Shear(total) Auto Z1: 0 m 0 m 0 m 1 Z2: Centroid 0 m^3 0 m 1 Z3: 0 m 0 m^3 0 m 1 Offset : Center-Center Ender Offset Display Centroid	
Show Calculation Results OK Cancel Apply	OK Cancel
PSC Value	AS-Plank-Girder

2. Precast Concrete Girder Section Database of Australia and New Zealand

Select PSC DB

Select DB

NZ

1:SH650-Inner-16m 2:SH650-Outer-L-16m

3:SH650-Outer-R-16m 4:SH650-Inner-18m

5:SH650-Outer-L-18m 6:SH650-Outer-R-18m

7:SH900-Inner-20m

8:SH900-Outer-L-20m

9:SH900-Outer-R-20m

10:SH900-Inner-22.5m

13:SH900-Inner-25m

11:SH900-Outer-L-22.5m

12:SH900-Outer-R-22.5m

 \sim

Type

Code

• New Zealand precast hollow core sections.

×

 \sim

NZ

9:SH900-Outer-R-20m

10:SH900-Inner-22.5m

13:SH900-Inner-25m 14:SH900-Outer-L-25m

15:SH900-Outer-R-25m

17:DH587-Outer-L-12m 18:DH587-Outer-R-12m 19:DH587-Inner-14m 20:DH587-Outer-L-14m

6:DH587-Inner-12n

11:SH900-Outer-L-22.5m

12:SH900-Outer-R-22.5m

 \sim

Select PSC DB

Select DB

Code

NZ-Hollow-Core

OK

Properties > Section

	PSC-	/alue		
Name	Mesh Size	for Stiff. Calc.		m
Define by Coordinates	Section	Properties		^
Section Data 💌	Ca	lc. Section Proper	ties	
	Area	0.00000e+000	m^2	
	Asy	0.00000e+000	m^2	
Param. for Design	Asz	0.00000e+000	m^2	
T1 0 m	Ixx	0.00000e+000	m^4	
T2 0 m	lyy	0.00000e+000	m^4	
BT 0 m	Izz	0.00000e+000	m^4	
	Сур	0.0000	m	-
HI U M	Cym	0.0000	m	-
Thk. for Torsion(min.)	Czm	0.0000	m	
Auto	Ovh	0.0000	m^2	1
U m	[ayo	0.0000		×
Consider Shear Deformati	ion 🗌	Consider Warping Eff	ect(7th DOF))
	War	ping Check 🛛 💿 Aut	o 🕕 User	
Shear Check	_			
Position C	29 /	Auto Thk. for Shear	(total) A	uto
21. 0 m 0	m^3		m	
Z2 : Centroid 0	m^3		m	
Z3: 0 m 0	m^3		m	
Offset : Center-Center		Displ	av Centroid	
Offset : Center-Center Change Offset			-,	
Offset : Center-Center Change Offset				
Offset : Center-Center Change Offset				

2. Precast Concrete Girder Section Database of Australia and New Zealand

- Section 2: T1025-22.5m and 4: T1225-27.5m are added in the database of NZ-Super-T.
- Section I 1500 is separated into I 1500-18m and I 1500-20m which have the same section properties but different arrangement of strands. Similarly, I 1600 into I 1600-22m and I 1600-24m.

3. Tendon Template for Australian Precast Girder

• AS-Super-T and AS-Plank-Girder are newly added for the auto-generation of tendon profiles.

don Template				– 🗆 ×	(2×1)		
					Auto Generation		X X X
Use Prefix Name	:	strand			1		TOP
Assigned Elements	:	319to330	Add	~	Name prefix	: strand	
		L			Tondon Bronorty	Topdap 001	
o Name		Property	~	Add	rendon Property	: Tendon 001 ~	
strand 001		Tendon 001		Madifi	Tendon Group	: Default 🗸	
strand_002		Tendon 001		Modify			
strand_003		Tendon 001		Set Property	Code	: AS ~	
strand 004		Tendon 001		Move/Copy	Туре	AS-Super-T	
strand 005		Tendon 001		MOvercopy	1 ype		
strand 006		Tendon 001		<u>D</u> elete	Name	AS-Super-T	
strand_007		Tendon 001		Import		AS-Plank-Girder	
strand 008		Tendon 001		Tuborc	Origin Point	: 0.000, 0.000 m	
strand 009		Tendon 001		Export			
0 strand 010		Tendon 001		Auto Generation	🖉 🗹 Initialize Tendon Templ	ate	
1 strand 011		Tendon 001	L. L	ndo generadon y			
2 strand 012		Tendon 001		<u>R</u> eset Name		<u>O</u> K <u>C</u> ancel	
3 strand 013		Tendon 001					
4 strand_014		Tendon 001					
5 strand_015		Tendon 001		<u>О</u> К		\sim	
6 strand_016		Tendon 001		Cancel			
7 strand_017		Tendon 001					
8 strand_018		Tendon 001	~	Apply			
endon							
Plana View			2.960 m		1		
Elevation View		•	2.300 m	_ _			
-Section					14		
- 319			ה ור				
320			- 11 - 17				
321			11 11	E g			
···· 322			- 11 - 17	8			
323			- N - F				
				1.680			

4. Tendon Template for New Zealand Precast Girder

• NZ-Super-T, NZ-I-Girder and NZ-Hollow-Core are newly added for the auto-generation of tendon profiles.

ndon Template			– 🗆 X	
ndon Template	:	strand 319to330 Property Tendon 001 Tendon 001	Add 319to330 V Add 319to330 V Add Modify Set Property Move/Copy Delete Import Export Auto Generation Reset Name	Auto Generation Name prefix : strand Tendon Property : Tendon Group : Default Code : NZ Type : NZ-Hollow-Core m Origin Point QK Cancel
17 strand_017 18 strand_018 Tendon ■ Plane View ■ Elevation View ■ Section ■ 319 ■ 320 ■ 321 ■ 322 ■ 323 ■ 324 ■ Pos. : ● i ○ j		Tendon 001 Tendon 001	Apply	

5. Fatigue Vehicle to AS 5100.2

- Check on the Fatigue option after selecting the M1600 without UDL or A160 vehicle.
- The reduction of the load effects to 70% can be done when defining Moving Load Case using the scale factor.

Load > Moving Load > Moving Load Analysis Data > Vehicles

AS 510	0.2 - Road T	raffic				
ehicula	ar Load Prope	erties				
Vehicu	ular Load Nam	e:	M1600	without UDL		
Vehicu	ılar Load Typ	e:	M1600 v	vithout UDL		
Dynar	nic Load Allov	vance :	0.3			
ļ	$\downarrow\downarrow$	$\downarrow \downarrow \downarrow \downarrow$	ļ	↓↓	Ļ	↓ ↓
ł	: > ∢ > ∢ D1 D2 D	> < > ≼ > ≼ > < 3 D4 D5 D	<mark>> ∢</mark> 16∽D7]	<mark>> ∢> ∢</mark> Ds Ds D		> <>) D12
No	(> < > < D1 D2 D Load(kN)	→ < → < → < 3 D4 D5 D Spacing(<mark>> ∢</mark> v6∽D7 1	→ < → < D8 D9 D Fatigue	- > ∢ 10 I	> ∢>) D 2
No 1	(> < > < D1 D2 D Load(kN) 120	→ < → < → < 3 D4 D5 D Spacing(1.	→ < 16~D? 1 m) ^ 25	→ < → < D8 D9 D	> < 10 I 2	→ ∢ >)11 D12
No 1 2	(> < > < D1 D2 D Load(kN) 120 120	→ < > < > < > < 3 D4 D5 D Spacing(1. 1.	→ < 16 ~ D7	→ < > < D8 D9 D	> < 10 I 2	→ < →) D12
No 1 2 3	← > < > < D1 D2 D Load(kN) 120 120 120	→ < > < > < > < 3 D4 D5 D Spacing(1. 1. 3.	→ < ·6 ~D? 1 m) ^ 25 25 25 75	→ < → < D8 D9 D	-> < 10 I	→ < >) Di2
No 1 2 3 4	← > < > < D1 D2 D Load(kN) 120 120 120 120 120	→ < > < > < > < 3 D4 D5 D Spacing(1. 1. 3. 1.	→ ← 16 ∽ D? 1 m) ^ 25 25 75 25	→ < → < D8 D9 D	-> ∢ 10 I 	→ < →) Di2
No 1 2 3 4 5	← > < > < D1 D2 D Load(kN) 120 120 120 120 120 120	> < > < > < > < > < 3 D4 D5 D Spacing(1. 1. 3. 1	> < m) ^ 25 25 25 25 25 25 25 25	→I < >I< D8 D9 D	-> ∢ 110 I	→ < →) Dı2
No 1 2 3 4 5 6	← > < > < D1 D2 D Load(kN) 120 120 120 120 120 120 120 120	> < > < > < > < > < > < > < > < 3 3 D4 D5 D Spacing(1. 1. 3. 1. 1. 1. 6.	> < m) ^ 25 25 25 25 25 25 25 25 25	→I < >I< D8 D9 D	-> ∢ 10 I	→I≪→I Dii Di2
No 1 2 3 4 5 6 7	← > < > < D1 D2 D Load(kN) 120 120 120 120 120 120 120 120 120 120	> < > < > < > < > < > < > < > < > 3 D4 D5 D Spacing(1. 1. 1. 3. 1.	> < 16 ∽ D? 1 m) ^ 25 25 25 25 25 25 25 25 25 25	→I < >I< D8 D9 D	-> ∢ 10 I	> ∢ >) D 2
No 1 2 3 4 5 5 5 7 8	← > < > < D1 D2 D Load(kN) 120 120 120 120 120 120 120 120 120 120	> < > < > < > < > < > < > < > 3 D4 D5 D Spacing(1. 1. 3. 1. 1. 1. 6. Infin 1. <	> < 6 ∽ D? 1 m) ^ 25 25 25 25 25 25 25 25 25 25	→I < >I< D8 D9 D	-> ∢ 10 I	> ∢ >) D 2

7.9 Fatigue load effects

The fatigue design traffic load effects shall be determined from 70% of the effects of a single A160 axle or 70% of a single M1600 moving traffic load, without UDL, whichever is more severe. In both cases, a load factor of 1.0 shall be used and the load effects shall be increased by the dynamic load allowance (α).

The single A160 axle load or M1600 moving traffic load, without UDL, shall be placed within any design traffic lane to maximize the fatigue effects for the component under consideration.

Define Standard Vehicular Load	×	Sub - Load Case	×
Standard Name			
AS 5100.2 - Road Traffic	\sim	Load Case Data	
Vehicular Load Properties		Vehicle Class : VL:M1600 without UDL	\sim
Vehicular Load Name : A160	_	Scale Factor + 0.7	
Vehicular Load Type : A160	\sim		
Dynamic Load Allowance : 0.4		Min. Number of Loaded Lanes : 0	
		Max. Number of Loaded Lanes 1	
P			
↓ ↓		Assignment Lanes	
	-	List of Lanes Selected Lanes	
		lane1	
No Load(kN) Spacing(m) Fatigue		Lane2	
1 160 end		-> Lane3	
OK Capital As	alu	<u> </u>	ancel
<u>Un C</u> ancel Ap	ріу		
Fatirus Mahialas A100		Maying Load Coop	
Fatigue Venicie: A160			

6. Load Combination to AS 5100.2: 2017

- Concrete structure only for roadway and pedestrian bridge.

Results > Combination > Load Combination

No	Name	Active	Type	E	Descripti *		LoadCase	Factor A	Code Selection
2	2 cLCB-22	Strengt	Add	Г	ULS4 : 1.2D+0.8[DeadLoad(CS1)(ST)	0.9000	Steel Concrete SRC Steel Comp
2	3 cLCB-23	Strengt	Add	Г	ULS4 : 0.85D+2.0		DeadLoad(PostSC)(ST)	0.9000	Design Code : AS 5100.2:17
2	4 cLCB-24	Strengt	Add	Г	ULS4 : 0.85D+0.8		DW(ST)	1.3500	Manipulation of Construction Stage Load Case
2	5 cLCB-25	Strengt	Add	Г	ULS5 : 1.2D+2.0[Dead Load(CS)	0.9000	O ST Only O CS Only O ST+CS
2	6 cLCB-26	Strengt	Add	Г	ULS5 : 1.2D+2.0[_	*			ST : Static Load Case CS : Construction State
2	7 cLCB-27	Strengt	Add	Г	ULS5 : 1.2D+0.8[
2	8 cLCB-28	Strengt	Add	Г	ULS5 : 1.2D+0.8[Bridge Type Roadway 🗸
2	9 cLCB-29	Strengt	Add	Г	ULS5 : 0.85D+2.0				Load Factors for Permanent Loads
3	0 cLCB-30	Strengt	Add	Г	ULS5 : 0.85D+2.0				Type of Load Load Facto
	1 cLCB-31	Strengt	Add	Г	ULS5 : 0.85D+0.8				R.S I.S
	2 cLCB-32	Strengt	Add	Г	ULS5 : 0.85D+0.8			=	Dead Load
3	3 cLCB-33	Strengt	Add	Г	ULS6 : 1.2D+2.0[Superimposed Dead Load
3	4 cLCB-34	Strengt	Add	Г	ULS6 : 1.2D+0.8[Sollard
3	5 cLCB-35	Strengt	Add	Г	ULS6 : 0.85D+2.0				
3	6 cLCB-36	Strengt	Add	Г	ULS6 : 0.85D+0.8				Groundwater Load
3	7 cLCB-37	Strengt	Add	Г	ULS7 : 1.2D+2.0[R.S : Reduce Safety
	8 cLCB-38	Strengt	Add		ULS7 : 1.2D+0.8[I.S : Increase Safety
	9 cLCB-39	Strengt	Add		ULS7 : 0.85D+2.0				Service Lond Condition from
4	0 cLCB-40	Strengt	Add		ULS7 : 0.85D+0.8				Fatigue Load Combination
4	1 cLCB-41	Strengt	Add		ULS8 : 1.2D+2.0[Road Traffic Case : MVL1
4	2 cLCB-42	Strengt	Add		ULS8 : 1.2D+0.8[-				Load Case Add
_					+			v	Delata
									Delete
ру	Impo	rt	Auto Gener	ration,	Spread Sheet	Form]		
-							,		

7. Prestressed Concrete Girder Design to AS 5100: 2017

- Prestressed concrete section design is now available as per AS 5100: 2017.
- Composite section for construction stages considering time dependent material can be considered with consideration of tendons and reinforcement in each stage (before and after composite effect).
- Ultimate Limit State (bending, shear and torsion resistance) and Service Limit State (crack, stress check) design are provided. All checks can be viewed in the Excel calculation report.
- Design results can be checked in the result tables for strength (bending, shear, torsion) and stress under construction and service loads, and tendons. PSC result diagram for forces and stress is also provided.

7. Prestressed Concrete Girder Design to AS 5100: 2017

PSC > Design Parameters > AS 5100: 2017

8. Serviceability Limit State Check for Plate Beam/Column Design to EN 1992-2

In the previous versions, only the ultimate limit state check was provided. Now, the serviceability limit state check is added for the stress limit in the concrete and reinforcement and the crack width check.

8. Serviceability Limit State Check for Plate Beam/Column Design to EN 1992-2

9. Fatigue Load Combination for Steel Composite Girder Design to Eurocode

In the previous versions, the fatigue check for the shear connector was performed for all the ULS load combinations. Now, it is performed only for the load combination selected as Fatigue Load Combination.

10. Military Load Classes

- Military load classes and application are implemented as per TRILATERAL DESIGN AND TEST CODE FOR MILITARY BRIDGING AND GAP-CROSSING EQUIPMENT (2005).
- These vehicles can only be found when the 'Poland' code is selected for the moving load code.

Load > Moving Load > Moving Load Analysis Data > Vehicles

Standard Name			
Military Load Class		~	
Vehicular Load Properties			
Vehicular Load Name	Tracked Vehicle		
Vehicular Load Type	Tracked Vehicle	~	
Select Vehicle	Class 12	~	
•	P		
	D	<u>→</u>	
Total Load (P)	10.88	tonf	
Tracked Length <mark>(</mark> D)	2.74	m	
Wheel Spacing	1.73	m	
Nose to Tail Distance		_	
Num of Vehicle			0.
			-
 Dynamic Amplification F Auto 	actor	1 50	
phi = 1.35 -0.00	05L (1= r		
	1 12	and the second second	
phi		the second second	
phi			and the second of the second o
phi			Internet States of the
phi			00000
phi		de la	00000
phi			00000

10. Military Load Class

11. Steel Design to CSA-S6-14

- Now steel design of beam and column can be performed as per Canadian CSA-S6-14 code.
- The results of steel design can be viewed in table format, detail report format and summary report format.
- Steel optimal design can be performed.

	CSA-30-14 Code Criecking result Dialog
	Code : CSA-S6-14 Unit : kN , m Primary Sorting Option
Design > Steel Design > CSA-S6-14	Sorted by Member Change Update O SECT O MEMB
	CH MEMB SECT SF Section LCB Len Om2v Pf Mfv Mtz Vfv Vtz ^
	K COM SHR L Material Fy WTR Lb Om1 Om2z Pr Mry Mrz Vry Vrz
	OK 1 3 E Beam, ISMB 300 4 8.0000 1000 1000 -205.94 0.0000 0.0000 109.274
View Structure Node/Flement Properties Boundary Load Analysis B	0.870 0.199 L Fe540 410000 - 8.0000 1.000 275.99 236.831 48.2889 0.00000 547.985
	OK 2 3 Beam, SMB 300 5 8.00000 1.000 0.00000 -206.37 0.00000 0.00000 -18.32
CSA-S6-14 AASHTO-LRFD12(US) SSRC79 CSA-S6-14	
Common	OK 0.860 0.196 Fe540 41000 Proteet Window
Para ES Design Code	OK 4 1 edge columns, ISMB 40 your and a market
Kesistance Factors	0.582 0.138 ' Fe540 41000, Design intormation
🗠 Modify Steel Material	OK 58 0.135 C
Serviceability Parameters	6 1 edge columns, ISMB 400 Matterial 400W(C) (No1)
Bending Coefficient(w2)	UN 0.578 0.138 1 Fe540 41000 (Py = 400.000, Eb = 200000) 3 10 10 10 10 10 10 10 10 10 10 10 10 10
✓4 Shear Coefficient(Cv)	OK 7 1 edge columns, SMB 400 sector Name + HP1264F(Not)
Specify Allowable Stresses	0.500 0.141 PESH0 41000 MamberLength (5000.00 PE
🔀 Longitudinal Stiffener of Box Section	OK 0.516 0.163 Fe540 41000 Member Forces
Transverse Stiffener of Section	OK 9 3 Beam, ISMB 300 Avial Force Pole Processing of the sector Name Avial Sector Name Avial Avial
Steel Davign Tables	0.489 0.138 ' Fe540 41000 Bending Momente W - (([1]]) CHECK AXIAL TENSION-COMPRESSION RESISTANCE.
Serviceability Parameters	OK 10 3 DEAM, SMB 300 MVI- C 564 41000 MVI- (). Check slenderness ratio of axial compression member (KL/r).
Steel Code Check F8 🛃 Bending Coefficient(w2)	Mei (CSA-56-14 10.9.1.3] - K/X = 80.5 < 120.0> 0.K.
Steel Optimal Design Ctrl+F8 Shear Coefficient(Cv)	Connect Model new View Result Rabo Prz = (). Calculate axial compressive load at yield stress.
📧 Steel Design Result 🦞 Specify Allowable Stresses	Select All Unselect All Re-calculation Design Parameters - pCy = Phi*Fy*Area = 5724000.0000 N. (Use not-reduced area).
Longitudinal Stiffener of Box Section	Graphic Detail Summary Clo unbraced Lengthe MIDAS-Civil - Steel Code Checking [CSA-S6-14] Version 8.6.1
	Bische Length Paton Norman Factor Stending Coeffic
	(). Check width-thickness ratio of element in flexural compression (BIR). : flanges of I-section
 Design->Steel Design [Drop down] ->Bending Coefficient (w2) 	CISA-56-14 10.9.2. Table 10.3] Sindemes Ratio - Limit 1 45-502(Fy) - 7.25
iree Menu + ×	$KL_F = 805 < 1200 \text{ (M} $ - Limit 2 = 1/0/SQR [Fy] = 0.50 - Limit 3 = 200/SQR [Fy] = 10.00 [mit 3 = 0.00 [mit 3
Gene Steel Conc SRC PSC CPG Ratin Ratin SOD	Axial Stength $- \sin k = -\cos $
	(), Cambo de l'acontions actual de la comparación (UNA). Bending Stength (Cambo de l'acontions actual de la comparación (UNA).
Option Add/Replace Delete	My/My = 442702377/507 - L 1100/50/ET(7y)) = (1-0.39) (E7/PCy) = 54.80 - L 1111 - (1100/50/ET(7y)) = (1-0.59) (E7/PCy) = 54.80
Bending Coefficient(w2)	MEMORE = 0/20376000 - LIAI2 = (1/00/30/AI(Fy)) = (1-0.6) = (C/PC/) = 04.32
w2: 1	- JIA = UCA = LIAN - JIA = UCA = JJA C = LIAN - CLASS
Calculate by Program	Rmax = Rmax1 = 0.836 < (), Calculation in the factor in t
Apply Close	Shear Rasintance - 5 as 1.0 structure tracticular tractical - 5 as - 0.50 5 as - 0.50 5 as 5 as 5 as 5 as 5 as 5 as
	Crb = phi*Årea*Fy*{1+Lambda^(2*n)}^(-1/n) = 2939573.95 N.
	(). Check ratio of flexural buckling resistance (CF/CTP). C Sells.17 0.000 - C C
	Crb 2339573.95 0.020 (1.000) 0.K.
	(). Calculate culer buckling stress about major(y) and minor(z) axis.

COALCO A Code Charling De

12. Reinforced Concrete Design to CSA-S6-14

- Now RC design can be performed as per the latest Canadian CSA-S6-14 code.
- The results of RC design can be viewed in table format, detail report format and summary report format.

Design > RC Design > CSA-S6-14

13. Plate Beam and Plate Column (1D) Checking to Russian SNiP and SP

- Plate elements can now be designed with the same method of designing conventional 1D elements such as Beam or Column as per SNiP 2.05.03-84* and SP 35.13330.2011. The plate design is performed for defined sub-domain. Member Type is chosen according to the purpose of the design. (e.g. Plate Beam (1D) : Slab Design and Plate Column (1D) : Abutment / Sidewall Design).
- Rebar Direction for the main rebar and distribution rebar can be defined using Local Coordinate System, UCS or Reference Axis.
- Node/Element > Elements > Define Sub-Domain

Civil 2019 Pre & Post-Processing

13. Plate Beam and Plate Column (1D) Checking to Russian SNiP and SP

- The results of plate beam checking/plate column checking can be viewed in table format and also both summary report and excel report can be outputted.
- Positive/Negative Bending moment capacity, shear capacity and crack checks can be performed and the detail results can be obtained from this function.

Design > RC Design > Plate Beam/Column Checking

14. Steel Section Database Update to IS-12778:2004

- Authorities have issued permission to allow sections from IS-12778:2004 for railway bridge design.
- Additional I sections (NPB, PBP, WPB) is now available for steel design and optimization.

Properties > Section Properties

/User Value SRC Com	bined PSC	Tapered Cor	mposite Steel Girder	DB/User	Value SRC Co	mbined PSC T	apered Composite Ste	el Girder			
ection ID 1	-								Section Properti	es	>
Immo NPB 330x160x57	I-Section		~	Section	ID 1	I-Section		~			
	🔾 User 🛛 🧕) DB IS	~	Name	PBP 320x117.32	⊖User ⊚[B IS	~		Value	Unit
	Sect. Name	NPB 330	x160x57 ~						Area	9.430000e-003	m^2
₹B1₹		Built-U	In Section			Sect. Name	PBP 320x117.32	~	Asy	6.180000e-003	m^2
		Duiteo	p sectori		т —В1— т		Duilt Lie Contine		Asz	2.101200e-003	m^2
i r1 tw					1 #1		Built-Op Secuon		lxx	8.674303e-007	m^4
	Get Data from	Single Angle		H	r1 r2				lyy	7.173000e-005	m^4
_ ↓ tf2	DB Name	AISC10(L	JS) 🗸 🗸	Ĩ		Get Data from 9	ingle Angle		Izz	2.626700e-005	m^4
B2	Sect, Name		~			DB Name	AISC10(US)	\sim	Сур	1.030000e-001	m
					i Β2 i	Sect, Name		~	Cym	1.030000e-001	m
		0.334							Czp	1.030000e-001	m
1,2		0.162							Czm	1.030000e-001	m
	81	0.102	m						Qyb	3.778426e-002	m^2
	tw	0.0085	m	Section Dat	a			×	Qzb	5.304500e-003	m^2
e⊸⊳ A	tf1	0.0135	m						Peri:O	1.215600e+000	m
	B2	0	m	DB/User	Value SRC Co	mbined PSC Ta	apered Composite Ste	el Girder	Peri:l	0.000000e+000	m
	tf2	0	m						Center:y	1.030000e-001	m
4 3	r1	0.018	m	Section	ID 1	-			Center:z	1.030000e-001	m
	r2	0	m	becaut		I-Section		~	<u>v1</u>	-1.030000e-001	m
				Namo	WPB 200x200x74 0	~ ~			<u>z1</u>	1.030000e-001	m
				Name	WPD 200X200X74.0	User 🔘	IS IS	~	<u>y2</u>	1.030000e-001	m
									z2	1.030000e-001	m
	Consid	der Shear Defo	ormation.			Sect. Name	WPB 200x200x74.01	~	<u>v3</u>	1.030000e-001	m
	Consi	der Warping Fi	ffect(7th DOF)				Built-Up Section		<u>z3</u>	-1.030000e-001	m
fset : Center-Center	consi								<u>y4</u>	-1.030000e-001	m
Change Offset				H	tw	Get Data from 9	ingle Angle		<u>z4</u>	-1.030000e-001	m
change on act						Get Data monta	ingle Angle				Class
					7142	DB Name	AISC10(US)	\sim			Close

15. Steel Composite Girder Design to IRC-22:2015

- Steel composite girder design is now possible with the latest IRC code. This feature is applicable for beam type of elements.
- Section checks for ultimate limit state as well as serviceability limit state are available.
- Results are available in tabular format and the details calculations could be referred in the excel file.

•	Design >	Comp	oosite	Design
---	----------	------	--------	--------

Composite Steel Girder Design Parameters	×
Code : IRC:22-2015 V Updat	e by Code
Dartial Factor	
Concrete Basic And Seismic(Gamma C)	1.5
Concrete Accidental(Gamma_c)	1.2
Structural Steel For Yielding and Buckling(Gamma_M0) 1.1
Structural Steel For Ultimate Stress(Gamma_M1)	1.25
Reinforceing Steel (Gamma_s)	1.15
Shear Connectors for Yield(Gamma_v)	1.25
Fatigue Load(Gamma_fft)	1
Fatigue Strength(Gamma_Mf,t)	1.35
Resistance to fatigue Number of Load Cycles	500000
Stress Limitation k1: 0.48 k3: 0.8 k4: 1	k6: 0.87
Deflection Control Limit : L / 600 m Crack Width k3 : 3.4 k4 : 0.425 Expor	sure : Moderate V
Option For Strength Limit State Post-buckling Tension Field Action for Shear Resist	ance
Ultimate Limit States Bending Resistance Resistance to Vertical Shear Resistance to Lateral-torsional Buckling Resistance to Transverse force Resistance to Longitudinal Shear Resistance to Fatigue	Serviceability Limit State Stress Limitaion Longitudinal Shear (SLS) Deflection Control Crack Width Check
	OK Cancel
Design Parame	ters

X∎	-	5	•	2.	- -								1.xls	к - N	licro	soft	Exce	1						?	<u> </u>	- 🗆	×
FILE		HOME INSERT PAGE LAYOUT			I	ORN	1ULA	JLAS DATA			A REVIEW				/IEW Easy Document Creator Sign						n						
AH14	1		Ŧ	:	\times	~	/	f_{x}																			~
C	D	Е	F	G	H I	J	к	L	М	N	OF	Q	R	S	Т	U	٧	wb	(Y	Z AA	ABAC		EAF	AG	AH		4
6	1.	Pa	artia	al Sa	afety F	acto	ors													(Ta	able 1,	3 IRC	22 :	2015	5)		
7		γc	for	cor	ncrete ((Basi	ic &	ι Sei	ismi	c)	1	.50	γs	for	rein	for	cing	stee					1.	15			
8		γc	for	cor	ncrete ((Acci	ider	ntal ()		1	.20	γv	for	She	ar (Conr	necto	rs (Y	/ield)			1.	25			
9		Υмα	o fo	r sti	ructura	l ste	el (Yield	d &	Bud	:kli 1	.10	γfft	for	fati	gue	e loa	d					1.	00			
10		Υм1	1 fo	r sti	ructura	il ste	el (Ultir	nate)	1	.25	γm	_{ft} fo	r fat	tigu	ie sti	rengt	h				1.	35			
11																											
12	11.	Se	ctio	n Pi	roperti	es																					
13		1) 9	Slab	Pro	perties											_		←		Deff		-				_	
14		[Sect	ion]						_						÷	s 🖡			h.							
15	_		Bc	=	2000.0	000	mn	n		_		_	_			í	Ê		ţ		1	_					_
16	_		t _c	=	300.0	000	mn	n				_				_	1.	2	Ā]						-
17	_		Hh	=	0.0	000	mn	n		_		_				_		3	Ī	11.							_
18	_		d _c	=	515.0	000	mn	n				_	_			_		7		→	-						-
19	_		† _{ck}	=	35.0	000	MP	a		_						_		;	,±	니니	1						_
20			Ec	=	32308	3.25	MP	а		_			_			_		+	ĺ. ₹	+	1						-
21	_		Fyk	=	500.0	000	MP	a		_		_	_						1	Dor							-
22	_											_	_					_									-
23	_	U	Lffei	ctive	Width	of C	onc	rete	Slab			_	_						(Cla	use 603	3.2.1, 1	RC 22	: 20	15)			-
24	_		Beff	=	L0/4	<=	(B1	+B2)/2 +	+ X								_	_				_				-
25	_			=	2000.0	000	mn	n											_				_				-
26	_						1-1			_	_	_	_						_				_				-
27	-	[K	(eint	orce	ement L	Jetai	isj			- (-					-	N La			-		Tabal	A	2)				-
28	_			POS	ition			mm)	C/C	space	ng (r	nm)	N 10	10.	N	D. OT	layers		ver (mm	Iotai	Area(n	1m2)				-
29	-			ор	op Layer 20 10					100.	000		18	5.0		1.000 50.000 5654.867								-			
30	-		80	lion	п сауег		(0.0	00		0.0	00		0.00	.0	(0.000		0.000					-
31	-	-	Deci	an (Strongth	h1					_	-	-					_	-			++	_				-
3∠ 22	-	1	Desi	gir : Cer	norete C	u) Clah r	n	_	1/	<u>.</u>		-	0	0		~	_	0.67		Δηρογ		RC 22	. 20	15)			-
24		-		0	norete a		(1) f	-	 	, , , f		=	0	.o 15 A	33	a	- MDa	0.07	Conc		ian Stra	anath f	or Ree	ic &	Seismir	• 1	-
24 25	-						'cd(s) f	-	a .)	• ⊺rd • f	(s) / 1	c =	-	10.5	.33 :42		MD		Conc	rete Des	ian Str	angur i angth f	or Acc	riden	tal)		-
26	-						•cd(s)	-		10	c(s) / 1	c -	-		-16						ign str			l	uurj		-
20			L	Cto	ol Pobo		f		f /			_	1	217	700		MD		oinfo	rcomon	Dociou	Strop	ath)				- 6
-	Þ			Elei	m_1_i		(Ð										3	4								Þ
						-												-		m							no/

16. Plate Beam and Plate Column (1D) Design to IRC 112:2011 Code

- Plate elements can now be designed with the same method of designing conventional 1D elements such as beam or column as per IRC 112: 2011.
- The plate design is performed for defined sub-domain. Member Type is chosen according to the purpose of the design. (e.g. Plate Beam (1D) : Slab Design and Plate Column (1D) : Abutment / Sidewall Design).
- Rebar Direction for the main rebar and distribution rebar can be defined using Local Coordinate System, UCS or Reference Axis.

Node/Element > Elements > Define Sub-Don Define Domain	Define Sub-Domain	
Domain Name beam Element Type Plate Element List 132 133 135 137 148to157 163to167 173to177 196 Add Modify Delete Name Type beam Plate column Plate	Domain Name Element Type Plate Sub-Domain Name L Plate Beam (1D) Plate Beam (1D) Plate Beam (1D) Plate Beam (1D) Plate Beam (1D) Plate Column (1D) UCS Curre Shell Reference Axis Reference Axis Reference Axis	
Sub-Domain Close Define Domain	V1: 0.00, 0.00, 0.00 V2: 0.00, 0.00, 0.00 Rebar Dir.(CCW) Ur.1: Angle from Local Axis x 0 ~ [deq] Dir.1: Angle from Dir.1 90 ~ [deq] 90 ~ [deq] 0 ~ [deq] 90 ~ [deq] 0 ~ [deq] 90 ~ [deq] 0 ~ [deq] 12133 135 137 148to157 163to167 173to177 196to199 201to204 211 Ad Add Modify Delete Name Type Rebar Dir. Angle Elements L Beam Local 0+90 132 138to14 1 Beam Local 0+90 231to24 V 2 Beam Local 0+90 273to28 V Close	* Note : This feature is used for the calculation of Wood-Armer moment of specific direction. This will be fixed to default for Plate Design (Dir.1 = 0 deg, Dir.2 = 90 deg).

16. Plate Beam and Plate Column (1D) Design to IRC 112:2011 Code

- The results of plate design can be checked in table format and also both Graphic and Detail report can be outputted.
- Positive/Negative Bending moment capacity, shear capacity and crack checks can be performed and the detail results can be obtained from this function.
- The main target of this function is culvert and abutment. Axial force is not critical when we are designing culvert or abutment. Therefore this feature does not consider the benefit of axial force in calculation of flexural strength. However the calculation of axial resistance is provided in checking mode.

Design > RC Design > Plate Beam/C	Column	Plate Beam Check Result Dialog — 🗌 🗙
IRC:112-2011 * SSRC79 *	Rebar Input for Plate Beam	Code : IRC:112-2011 Unit : kN, m / m Results : ③Strength
RC Design SRC Design	Name B1	Sub-Domain SEL Major Dir CHK Pos Use_As Ele Nod LCB_M M_Ed M_Rd Ratio Ele Nod LCB_V V_Ed
Design Code		L Dirl NG Pos 0.0031 199 204 13 77.3405 316.341 0.2445 Ng 0.0031 199 204 13 77.3405 316.341 0.2445 Ng 0.0031 199 204 13 77.3405 316.341 0.2445 177 12 13 304.138
Partial Safety Factors for Material Properties		L □ Dir2 0 Plate Beam Check Result Dialog - X
Modify Concrete Material	As 0.003142 m^2/m Laver 1 ~	Code : IRC:112-2011
Limiting Maximum Rebar Ratio	Layer Num Size1 Size2 Dt	Results : Strength Serviceability
Limiting Minimum Section Size	1 10 P20 0.03	Sub-Domain SEL Major Dir CHK Pos Ele Nod LCB Concrete Reinforcemen Ele Nod LCB w waa
Scale Up Factor for Column		m. e m. e m. s sa s sa m. e m.
Serviceability Parameters	× 1	L Dir2 Orr Neg 166 116 40 3674.3 3938.1 33707 400000 214 216 52 0.0000 0.0003 L T Dir2 Orr Pos 177 12 40 2403.6 3938.1 32707 400000 214 216 52 0.0000 0.0003
Serviceability Load Combination Type	Battam	L 1 0112 0K Neg 166 116 40 1635.5 3938.1 15004 400000 176 126 52 0.0000 0.0003
Beam Section Data for Design	As 0.003142 m^2/m layer 1 ~	
Beam Section Data for Checking	Layer Num Size1 Db ^ 1 10 P20 0.03	1. Design Condition Design Condition Design Condition HIDAS/C1v11 - BC-Plate Beam Checking [IRC:112-2011] C1v11 201 Design Checking [IRC:112-2011] C1v11 201 Design Checking [IRC:112-2011]
Column Section Data for Design		Ludijskem i Akm, /m Makew Das i Sareoo, ty = 500000, tyw = 500000 xPs Thickeys i 0.3 m Thickeys i 0.3 m
Column Section Data for Checking		2. Section Diagram Aew Optio RC-Flate Member (Flate Beam/Column) Analysis and Design Based On AASHTO-LFRD12, Eurocode2-2:05, IRC:112-2011
Olumn General Section Data for Checking		COK (C) SIRVE 1999 1
🗐 Plate Beam Data for Design	Stirrup	MIDAS IT Design Development Team
🗐 Rebar Input for Plate Beam	Size P6 V	ReborPatern TogoNegotive) Bodorn(Pastive) Layer1 P20g010 P20g010
Plate Beam Data for Checking	Spacing 0 m	Tatal Rebor Area - 0.000284 mr2m Using Stimus Spusing : No Stimup
	Number 0	3. Bending Moment Capacity
Plate Column Data for Design	Add Modify Delete	Top/legstw) Betwer/Pastive) Dut G Database finance (18,000,1) + Dotabase finance (
Rebar Input for Plate Column	TD Name	Bitment No. 68 132 2 1 DL(1.150) + DL(1.500) +
Plate Column Data for Checking	1 B1	Mo 31634 316.84 4 1 DL(1.500) + W1(-0.500) Chead Rate (MLMb) 0.1999 0.2383 5 1 DL(1.000) + L1(1.500) + WX(-0.500) Using Resort(ka) 0.0031 0.0031 6 1 DL(1.000) + LL(1.500) + WX(-0.500) 1 DL(1.000) + LL(1.500) + WX(-0.500) 1 DL(1.000) + UL(1.500) + WX(-0.500)
Concrete Design Tables		4. Shear Capacity 8 DL(1.000) + LL(1.500) + WY(~0.500) Exercision 132 10 1 DL(1.150) + LL(1.500) Load Combination 4.6754 10 1 DL(1.1500) + LL(1.500)
Concrete Code Design		Applied Shary Faroe V_LEd = 190.095 11 UL(1.500) LL(1.500) Bherr Sheergh (Out optione) V_LEd = 279.076 13 DL(1.000) LL(1.150) WX(1.500)
Concrete Code Check	Close	SHearRate V_Eav_Rde+196.095/279.076 = 0.705 < 1.000
	Top and Bottom rebar data can be inputted	Converte Return 17 1 DL(1.000) + LL(1.150) + WX(1.500) Exervent No. 196 106 18 1 DL(1.000) + LL(1.150) + WX(1-1.500) Exervent No. 196 106 10 DL(1.000) + LL(1.150) + WX(1-1.500)
Dista Dasian Jacuta	Top and bollotti rebui dala can be inpulled	(-) Load Combinistion d.CB40 d.CB40 20 1 DL(1.100) H1(1.500) Stress(s) 1633.47 1503.50 21 DL(1.100) + LKY(-1.500)
Plate Design inputs	separately for multiple locations.	Alovable Stress(ss) 3938 07 40000 00 Stress Rubic(sa) 04153 0.0375 Detail Report