

Release Note

Release Date : March 2020

Product Ver. : Civil 2020 (v2.1)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and ivil Engineering

Enhancements

- 1. Multiple stage post-tensioning in tendon
- 2. Auto division of the fiber section (Core and cover)
- 3. New option for Moving load optimization
- 4. Application rule change of Military Load Class
- 5. Improvement in calculation of torsional constant for closed composite section
- 6. Improvement of the element temperature calculation method for the composite section for C.S.
- 7. Improvement of the analysis speed for the inelastic time-history analysis
- 8. Improvement in GSD Civil pushover hinge export
- 9. Bridge Assessment to the UK standard: CS 454/19
- 10. RC Design to IS 456:2000 & Crack calculations by IS 3370(Part 2):2009

1. Multiple stage post-tensioning in tendon

• Re-tensioning of tendon is now supported. Immediate losses and time-dependent losses which occurred before re-tensioning are removed and recalculated based on the summation of multiple stage stressing applied to the tendon starting from the time of re-tensioning.

2. Auto division of the fiber section (core and cover)

- In earlier versions, the fiber section was to be manually divided into the core & cover regions and this was to be done for all such sections.
- Now, just the fiber hinge needs to be defined and the fiber division of the section can be done automatically, including differentiation for confined and un-confined concrete. Also, the fiber division can be equal size or auto size.

Properties > Inelastic Material > Fiber Division of Section

3. New option for moving load optimization

- In earlier versions of midas, there was auto calculation to control the critical position of the analysis lanes in moving load optimization. Lane offset had to be provided manually.
- In this version, the limitation is removed as the number of analysis lanes can be specified by the user and this ensures that vehicle is placed at the extreme ends of the optimization lane.

4. Application rule change of Military Load Class

- In earlier version, to obtain the most unfavorable condition for the structure, even the partial vehicle load was considered.
- Now, only complete vehicle would be considered to obtain the worst effect on the structure.

5. Improvement in calculation of torsional constant for closed composite section

- The torsional constant calculation has been improved for composite section which has open cross-section before composite and closed cross-section after composite, e.g. Super T girder.
- Now, the torsional constant is calculated according to finite element based analysis thus calculating for both before composite and after composite separately.

Properties > Section Properties > Composite

	Section Properties			X Section Properties					
		Value(Before)	Value(After)	Unit		Value(Before)	Value(After)	Unit	
	Area	5.361715e-001	1.230545e+000	m^2	Area	5.361715e-001	1.230545e+000	m^2	
	Asy	4.831434e-001	4.645265e-001	m^2	Asv	1.237778e-001	7.374340e-001	m^2	
	Δ <u>97</u>	6 130852e-001	5 972085e-001	m^2	Asz	2.125628e-001	2.803497e-001	m^2	
	lxx	7.834168e-003	1.506723e-002	m^4	lxx	6.700396e-003	1.916471e-001	m^4	
	lw	1.011163e-001	2.928666e-001	m^4	w	1.011163e-001	2.928666e-001	m^4	
	Izz	1.123795e-001	6.331598e-001	m^4	Izz	1.123795e-001	6.331598e-001	m^4	
	Сур	1.050000e+000	1.050000e+000	m	Cvp	1.050000e+000	1.050000e+000	m	
	Cym	1.050000e+000	1.050000e+000	m	Cvm	1.050000e+000	1.050000e+000	m	
Dort I	Czp	6.635581e-001	2.185895e-001	m	Czp	6.635581e-001	2.185895e-001	m	
Parti	Czm	5.514419e-001	9.964105e-001	m	Czm	5.514419e-001	9.964105e-001	m	
	Qvb	0.000000e+000	0.000000e+000	m^2	Qvb	0.00000e+000	0.000000e+000	m^2	
	Qzb	0.000000e+000	0.000000e+000	m^2	Qzb	0.000000e+000	0.000000e+000	m^2	
	Peri:O	7.967478e+000	1.446748e+001	m	PeriO	7.967478e+000	1 446748e+001	m	
	Peri:l	0.000000e+000	0.000000e+000	m	Peril	0.000000e+000	0.000000e+000	m	
	Centery	1.050000e+000	1.500000e+000	m	Centerry	1.050000e+000	1 500000e+000	m	
	Center:z	5.514419e-001	9.964105e-001	m	Centerz	5 514419e-001	9 964105e-001	m	
	v1	-1.050000e+000	-1.050000e+000	m	v1	-1.050000e+000	-1.050000e+000	m	
	71	6.635581e-001	2 185895e-001	m	71	6.635581e-001	2 185895e-001	m	
	v2	1.050000e+000	1.050000e+000	m	<u>v</u> 2	1.050000+000	1.050000e+000	m	
	72	6.635581e-001	2.185895e-001	m	72	6.635581e-001	2 185895e-001	m	
	v3	4.070000e-001	4.070000e-001	m	v3	4 070000e-001	4 070000e-001	m	
	z3	-5.514419e-001	-9.964105e-001	m	73	-5.514419e-001	-9.964105e-001	m	
	y4	-4.070000e-001	-4.070000e-001	m	v4	-4.070000e-001	-4.070000e-001	m	
	z4	-5.514419e-001	-9.964105e-001	m	74	-5.514419e-001	-9.964105e-001	m	
				Class	,				
				Close				Close	
Part I + Part II	(Previous v	ersion			Civil 202	0 v2.1		

6. Improvement of the element temperature calculation method for the composite section for C.S.

- In earlier version, uniform temperature loads like system temperature, nodal temperature and element temperature were applied to transformed properties of composite beam elements.
- In new version, these loads are applied individually to each part based on temperature coefficient to predict more realistic behavior of structure, when composite section for construction stage are defined.

7. Improvement in analysis speed for inelastic time history analysis

• The output for non-linear elastic time history analysis with fiber modelling could now be restricted to required elements or links. This drastically reduces the overall analysis time of the model.

8. Improvement in GSD Pushover Hinge Export

- In earlier version, the yield moment was taken from the PMM interaction curve generated for the design instead of idealized curve in the Moment-Curvature curve.
- In this version, the yield moments depending on axial forces are taken from the idealized curve in the moment-curvature curve when exporting hinge data for pushover analysis.
- Pushover > Hinge Properties > Define Pushover Hinge Type/Properties Section View : Cvl_Column Interaction Curve Moment-Curvature Curve | Stress Contour P-M My-Mz 3D Mode Code : Eurocode2:04 Angle : 0 OP-My O P-Mz O Load Combination : V Dea. Ноор Туре Checking Ratio Tie Keep M/P constant Keep P constant Keep M constant Curvature Moment Moment Curvature Curve State *10^-3 (1/m (kN×m) Axial load = 9117.41 D a.Crack 1.046420 2540.213 Neutral Axis Angle = 0 (kN) 2500 b.Yield(Init.) 4.991872 5108.490 24908.970 1 7000 N.A=0.000 kg 7.474051 5658.068 c.Yield 2 18768.158 €500 d.Ultimate(conc) 43.595 4855.292 3 17834.453 6000f C e.Ultimate(rebar) 4 16838.642 5 15794.918 f.Yield(ideal) 5.485665 5613.820 5500 6 14720.885 5000 7 ħ 13621.335 152 Strain 4500 8 12492.856 9 11357.819 4000 Strain Diagram 10 10227.107 £ C 3500 11 9117.409 12 8081.230 3000 13 7329.061 2500-14 6593.286 2000 15 5639.075 16 4577.785 1500-17 3493.591 1000 18 2354.494 500 19 1170.870 R · 0 20 7.722 15 20 25 60 75 80 85 90 95 105 21 10 20 25 40 45 50 55 65 70 -1225.595 22 -2540.706 Point Number 0 Curvature*0.001(1/m) 23 -3900.146 -7500 Concrete Strain 0 Cracked Moment of Inertia (Icrack) = 0.0373679 m⁴ 8 24 -5438.150 Rebar Strain : 0 25 -6146.546 a : Crack starts d : Concrete Strain reaches the ultimate strain Neutral Axis Depth : 0 m b : Concrete or tensile steel yields e : Tensile steel Strain reaches the ultimate strain c : Both concrete and tensile steel yield f : Yield in Idealized Model Export Report Close Previous version Civil 2020 v2.1

9. Bridge Assessment to the UK standard: CS 454/19

- Level 1 assessment can be performed now for PSC Box & PSC Composite sections in midas Civil. All model 2 vehicle is also introduced in accordance to CS 454 Assessment code.
- Assessment load combinations can be defined to obtain output for strength & service limit states.

Standard Vehicular Load X			I			
dard Name						
454 Assessment 🗸						
cular Load Properties						
icular Load Name : ALL MODEL 2(UDL +KEL)	EER					
icular Load Type : ALL MODEL 2(UDL +KEL) V						
UDL KEL	Assessment Parameter	Define Assessment Case				- 0
< ∞ →		Load Combination			- Static Load Caron and Eastern/Camma d	0
	Condition Factor(Fc)	Name	Limit State Comb Tune Co	mma f2 A	Static Load Cases and Factors (Gamma_m	/
	Value of Gamma_m(Ultimate limit States)	Name Name	SIS Comb1	1	Static Load Cases	1 0000
e Factor	Characteristic Strength	SI S-2	SLS Comb2	1	SDL (ST)	1 2000
CS 454	O Worst Credible Strength	SLS-3	SLS Comb3	1	L(ST)	1.0000
User-defined Lane Pactor		SLS-4	SLS Comb4	1	*	
aded length, L(m) UDL (kN/m) KEL (kN)	User Input	ULS-1	ULS Comb1	1.1		
230	Modify Design Parameters	ULS-2	ULS Comb2	1.1		
$\leq 20m$ $\frac{2.50}{L^{0.67}}$ 82		ULS-3	ULS Comb3	1.1		
226 1 120	Strength Limit State	ULS-4	ULS Comb4	1.1		
$m < L < 40m$ $\frac{330}{L^{0.67}} \cdot \frac{1}{1.92 - 0.023L}$ $\frac{120}{1.92 - 0.023L}$	✓ Flexure			_		
226	Shear					
$m \le L \le 50m$ $\frac{530}{L^{0.67}}$ 120	Torsion					
$> 50m$ $\frac{36}{.01}$ 120	Serviceability Limit State					
Lou	Stress/Crack					
tagory for K-Factor						
raffic/Surface Category : Hp 🗸	Detail Report	<		~	Moving Load Cases and Factors(Gamma	f)
oad Level : 40t 🗸	Ultimate Limit State				Standard Vehicle	
	Serviceability Limit State		Copy Assessment Load Combination	1		~ 1.2
			Copy into General Load Combination	ı	Special Vehicle	~ 0

9. Bridge Assessment to the UK standard: CS 454/19

- Assessment results could be viewed in tabular format in midas Civil itself and these can be exported to excel file as well.
- Summary as well as detailed report is provided for Flexural, Shear, Torsion & Service limit state for Class 1 and 2 category.

10. RC Design to IS 456:2000 & Crack calculations by IS 3370(Part 2):2009

- Reinforced Concrete Design as per IS 456: 2000 is now available in midas civil, where we can perform Beam Design, Beam Checking, Column Design, Column Checking
- We can generate Graphic/Detailed reports which include both Ultimate Limit State and Serviceability Limit State checks as per IS 456:2000. Also, Crack Width Checks as per IS 3370 (Part-2) :2009 can be obtained for Beams.

Design > RC Design > IS456:2000		IIDAS/Text Editor - [1_Model_JS456,RCDesign.rcs] ile Edit View Window Help
		ᄚᄆᄚᇈᆮᆙᆥᅆᆙᇊᇊᄷᆥᇃᇰᇃᇊᄼᇾᇾᆙᅆᅀᆤᇒᄸᇟᆮᄛᆥ
	Preview Window - onia	(). Compute moment magnification factors for major axis(DBy,DSy). . Cmy = 0.85 (Default or User defined value)
	No:10 V 🖨 Print 🎒 Print All 🖫 Close 🖬 Save	DBy < 1.0> DBy = 1.00 DSy = 1.00 (Default value)
	Section Property : Beam (No : 1) 00117 00118 00119	(). Compute minimum eccentric moments(Mmin). . Emin = MAX[MAX[Ly,Jz]/500 + Dmax30, 20] = 0.028 m. . Menin y = Pu [*] Emin = 9.57 kN-m
	2. Section Diagram	().Compute magnified moments.
	(IND) (IND) (IND-4) (0123	Eile Edit View Window Help
		□ □ ☞ ■ ● Δ ভ
oncrete Design Code X		00005 *.MEMBER : Member Type = BEAM, MEMB = 10 000066 *.DESCRIPTION OF BEAM DATA (iSEC = 1) : Beam
Decian Code : IS456-2000		00068 Section Type : Rectangle (RECT) 00069 Beam Length (Span) = 6.000 m.
		OUDPU Section Depth (Hc) = 0.500 m. 00071 Section Width (Bc) = 0.300 m.
Apply Special Provisions for Seismic Design	TOP1: 2-P20, TOP1: 2-P20, TOP1: 2-P20, 00136	00072 Concrete Strength (fck) = 30000.000 KPa. 00073 Main Rebar Strength (fy) = 415000.000 KPa.
Noment Redistribution Factor for Beam :	TOP2: TOP2: DO137 BOT1::>P20, BOT1::>P20, BOT1::P20, BOT1: BOT1:: BOT2: BOT2: BOT3;	00074 Stirups Strength (fyw) = 415000.000 KPa. 00075 Modulus of Elasticity (Es) = 200000000.000 KPa.
Torsion Design	anevea:	00077 *.FORCES AND MOMENTS AT CHECK POINT <i> : 00077 - Desiring Renders Margare D.M.Ed 20.02 hM.E. LCB - 2</i>
IS 3370(Part 2):2009 Crack Width Check	No:4 Servint Servint All Sclose Serve	D0079 Negative Bending Moment P-M_Ed = 30.02 kH-m., LCB = 2 00079 Negative Bending Moment N-M_Ed = 164.95 kH-m., LCB = 1 00080 Shear Force V_Ed = 85.03 kH., LCB = 1
Crack Width due to Temperature & Moisture - Annex A	3. Bending 1	00081 Torsion T = 2.84 kN-m., LCB = 11 00082
- Estimated Shrinkage Strain 0.0025	Negative Mon 1. Design Condition	00084 00084
Estimated Total Thermal Contraction after Peak Temperatrue due to Heat of Hydration 0.0025	(-) Load Com Design Code IS456:2000	00086
- T1 (C) Fall in Tomporature between the	Factored Stre Unit System kN, m	00088 Bottom 1 0.040 2-P20 0.00063
hydration peak and ambient 30	Oncorrection Member Number 4 Material Data fok = 40000 fv = 415000 free = 415000	00090 Stirrups : 2.0-P12 @300
	Column Height 4 m	00092
O Crack Width in Mature Concrete - Annex B	Section Property Column (No : 2)	00094
- Limiting Design Surface Crack Width(mm)	Rebar Pattern Pos 1 Pos 2 Pos 3 Layer 1 6-P32 10-P32	00096 (). Compute design parameters. 00097 alphal = 0.642857
	Layer 2 6-P32 10-P32	00098 betal = 0.8400 00099 Gamma m = 1.50 (for concrete).
	Total Rebar Area Ast = 0.0514688 m ² 2 (Rhost = 0.2145)	00100 fcd = fck / Gamma m = 20000.000 KPa. 00101 Gamma s = 1.15 (for Fundamental).
OK Close	2. Applied Loads	00102 fyd = fyk / Gamma_s = 360869.565 KPa.
	Load Combination 3 AT (I) Point	00104 (). Check area of tensile reinforcement (Rectangular-beam).
	N_Ed = 341.642 kN, M_Edy = 126.847, M_Edz = 9.56598, M_Ed = 127.207 kN-m	$\begin{array}{cccc} 00106 & -, ecu & = & 0.0035 \\ 00107 & -, ect & = & fu/(1)E^2 + 0.002 = & 0.0026 \\ \end{array}$
options for IS 456:2000 & IS 3370(Part 2):2009	3. Axial Forces and Moments Capacity Check	$\begin{array}{cccc} 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.maxl} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ \text{As.max} = (fck^*Bc/fy)^*(betal*ecu*d/(est+ecu)) = & 0.0040 \text{ m}^{-1} \\ 00108 & \ As.m$
	Concentric Max. Axial Load N_Rdmax = 17327.4 kN	00110 As.max2 = 0.04 * (BC*RC) = 0.0060 m^2 00110 As.max = min[As.max1, As.max2] = 0.0040 m^2
	- Axial Load Ratio N_Ed/N_Rd = 341.642 / 1074.14 = 0.318 < 1.000 O.K	00111 As.min = 0.85*bt*d/fy = 0.0003 m ⁻¹ 00112 As.prov = 0.0006 m ⁻² .
	Moment Ratio M_Edy/M_Rdy = 125.847 / 398.879 = 0.318 < 1.000 O.K	00113 As.min < As.prov < As.max> O.K ! 00114
	M_Edz/M_Rdz = 9.55598 / 29.1810 = 0.328 < 1.000 O.K	4
	M_Ed/M_Rd = 127.207 / 399.945 = 0.318 < 1.000 O.K	Ready Ln 208 / 392 , Col