Advanced Application 2

Seismic Design for Reinforced Concrete Building

Seismic Design for Reinforced Concrete Building

Overview

This example problem is meant to demonstrate the design of a Reinforced Concrete building structure subjected to floor loads, wind loads and seismic loads.

Description

Seismic Design Data

- Dual system (special reinforced concrete structural walls with special moment frame) in the transverse direction
- Special moment frame in the longitudinal direction
- Assigned to a high seismic zone

Methodology

- Response spectrum analysis
- P-Delta analysis

Model

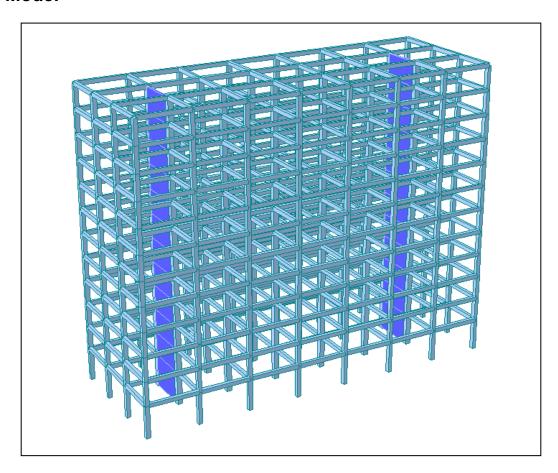


Figure 1: Reinforced Concrete Building Model

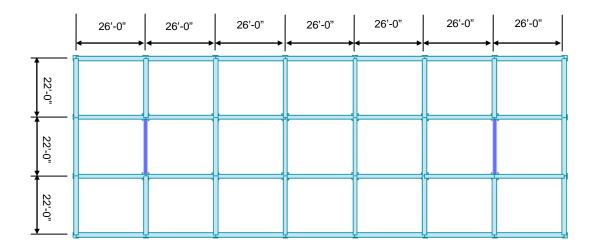


Figure 2 : Typical Floor Plan

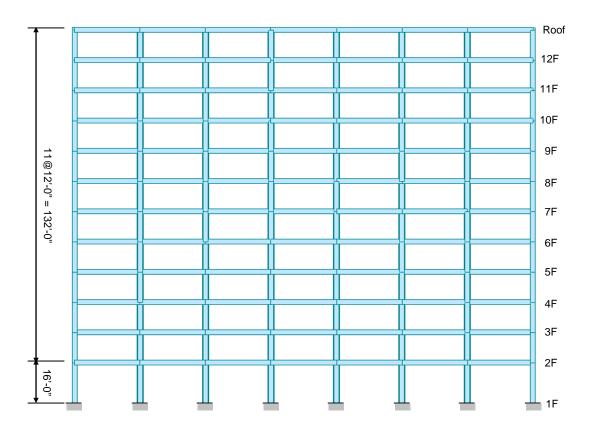


Figure 3 : Longitudinal Section

Design Procedure

1. Material & Section Properties Input

Material

- Concrete fc' = 4,000 psi
- Reinforcement fy = 60,000 psi

Section

- Edge columns 24×24 in.
- Interior columns 30×30 in.
- Beams 20×24 in.
- Walls 18 in. (In-plane & Out-of-plane)

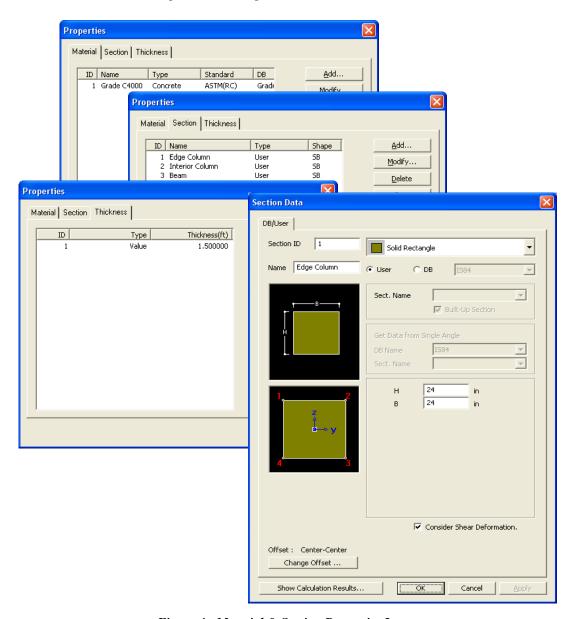
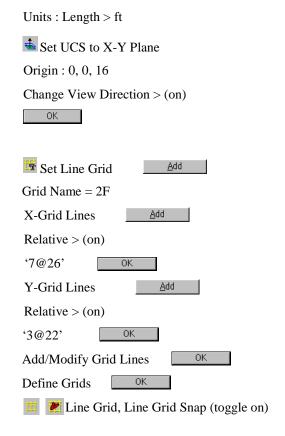



Figure 4: Material & Section Properties Input

2. Create Model

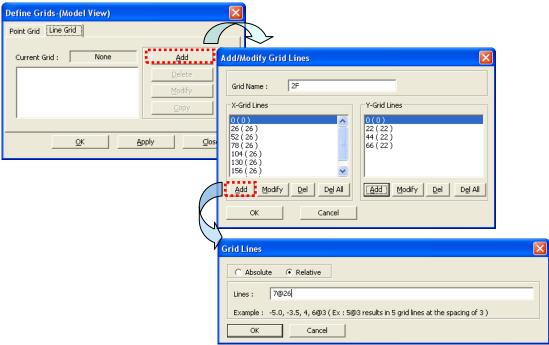


Figure 5: Create Grid Lines

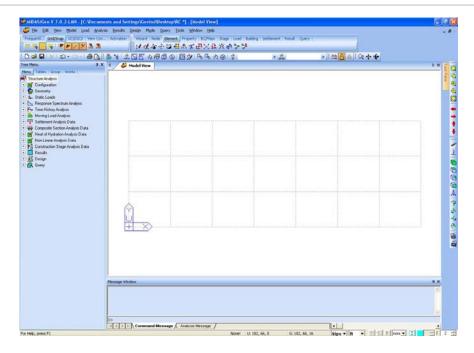


Figure 5: Grid Lines in X-Y Plane

Generate Floor Plan

- **\$** Hidden, Node Number, Lement Number (toggle on)
- Create Elements

Element Type = General Beam / Tapered Beam

Section Name = 3: Beam

Draw Elements as shown (Refer Figure 6)

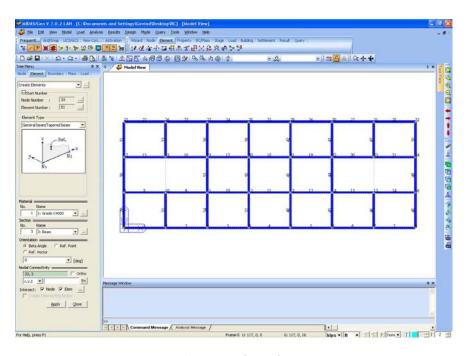


Figure 6: Floor Plan

Generate Columns

Change to GCS

Select All

Extrude Element

Node → Line Element

Reverse I-J > (on)

Element Type = Beam

Material = 1 : Grade C4000

Section = 1: Edge column

 d_x , d_y , $d_z = 0$, 0, -16

<u>A</u>pply

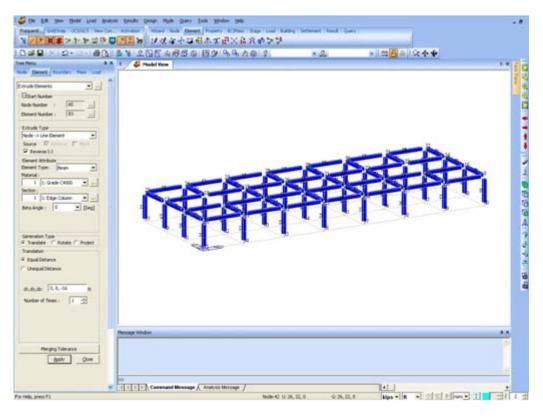


Figure 7: Generate Columns

Change Properties of Interior Columns

Work > Properties > Section: 1: Edge column = Active

□ Display > Property > Property Name > (on)

OK

Isometric View (Refer Figure 8)

Top View > Select Window > Select Interior Columns

Work > Properties > Section = 2 : Interior column

Drag & Drop (Refer Figure 9)

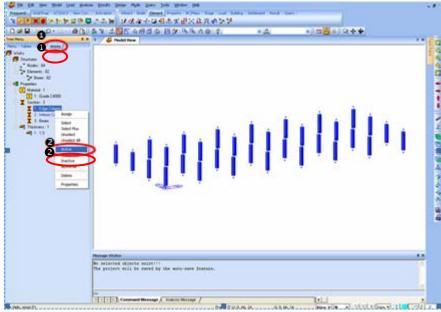


Figure 8 : Inactivate Beams

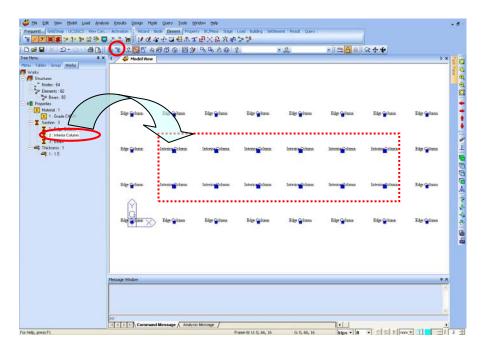
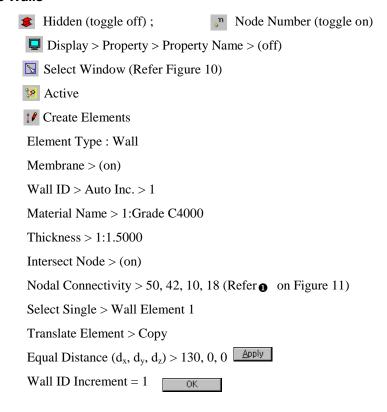



Figure 9: "Drag & Drop" Interior Column Properties

Drop

Generate Walls

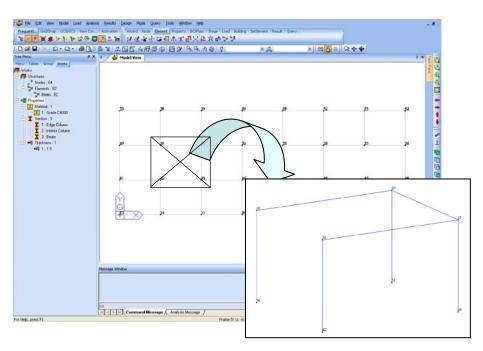


Figure 10: Location of Wall Element

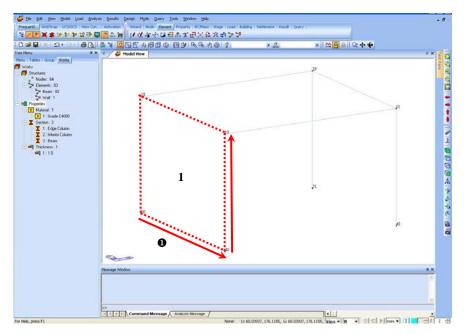


Figure 11: Nodal Connectivity of Wall Element

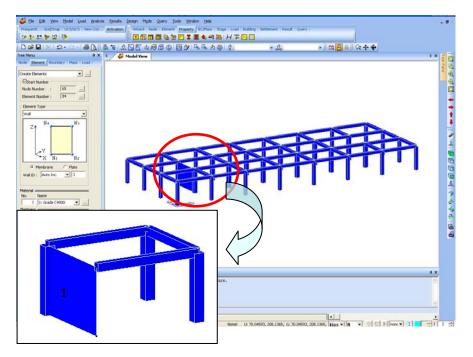


Figure 12 : Generation of Wall Element

Building Generation

Select All

Model > Building > Building Generation

Number of Copies = 11

Distance(Global Z) = 12 Add Apply

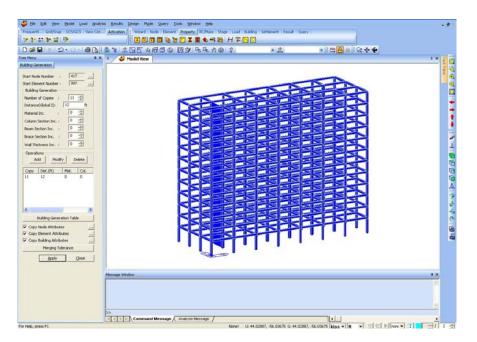
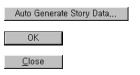



Figure 13: Building Generation

Generate Story Data

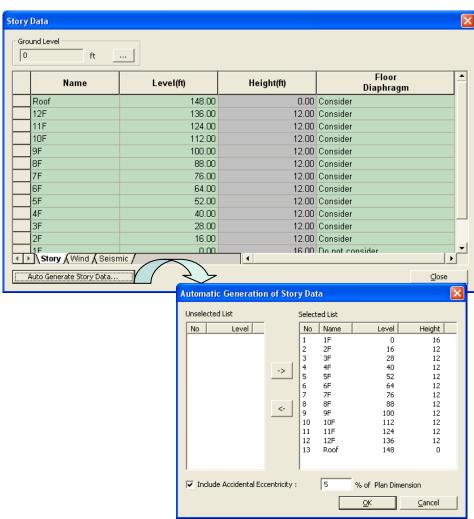


Figure 14: Generation of Story Data

3. Boundary Conditions Input

The lower ends of the columns are assumed fixed.

Model > Boundary > Supports
D − All > (on)
R − All > (on)
Select Window

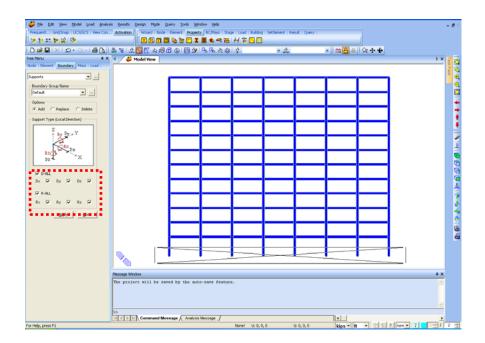


Figure 15: Boundary Supports

4. Loading Data Input

Load > Static Load Cases

- Dead Load
- Live Load
- Wind Load (X-direction)
- Wind Load (Y-direction)
- Earthquake Load (X-direction, Eccentricity direction-Positive)
- Earthquake Load (X-direction, Eccentricity direction-Negative)
- Earthquake Load (Y-direction, Eccentricity direction-Positive)
- Earthquake Load (Y-direction, Eccentricity direction-Negative)

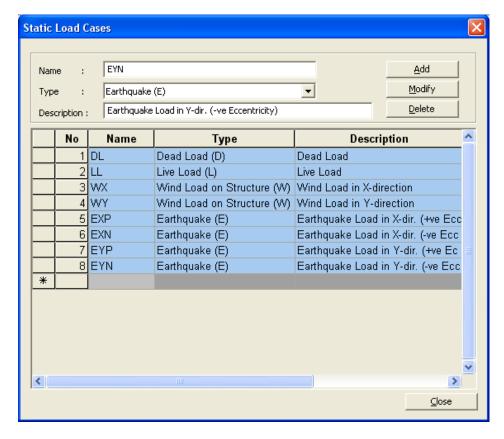


Figure 16: Loading Data Input

Self Weight

 $Load > Self\ Weight$

Z= -1 Add

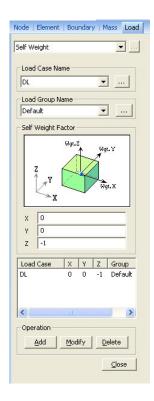
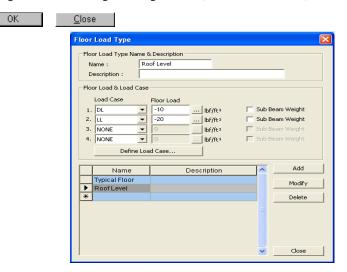


Figure 17 : Self Weight Load

Floor Load

Load > Define Floor Load Type


- Name > Typical Floor: DL = -30 psf, LL = -75 psf
- Name > Roof Level : DL = -10 psf, LL = -20 psf

Load > Assign Floor Load

- Load Type > Typical Floor
- Two Way Distribution
- Copy Floor Load > (on)
- Axis > z (on)
- Distance > 10@12
- Assign Nodes Defining Loading Area > (1, 8, 32, 25)

Similarly, assign floor load at roof level:

- Load Type > Roof Level
- Copy Floor Load > (off)
- Assign Nodes Defining Loading Area > (386, 387, 417, 410)



Figure 18: Assign Floor Loads

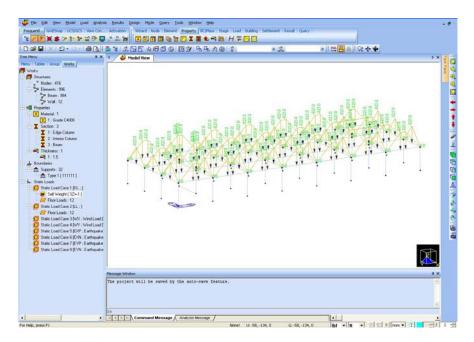


Figure 19 : Floor Load Distribution

Wind Loads

Load > Lateral Loads > Wind Loads

Add

- Load Case Name > WX
- Wind Load Code > IBC2000 (ASCE7-98)
- Simplified Procedure > (on)
- Basic Wind Speed > 85 mile/h
- Importance Factor > 1
- Exposure Category > B
- Scale Factor in Global X > 1
- Scale Factor in Global Y > 0

<u>A</u>pply

- Load Case Name > WY
- Scale Factor in Global X > 0
- Scale Factor in Global Y > 1

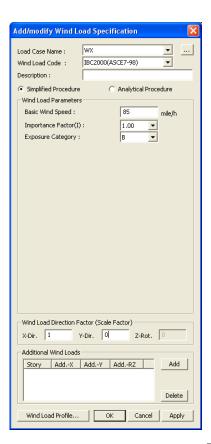


Figure 20: Input Wind Loads

Convert Model Weight & Loads to Masses

Model > Structure Type

- Structure Type > 3-D (on)
- Convert to X, Y (on)
- Gravity Acceleration > 32.1719 (ft/sec²)

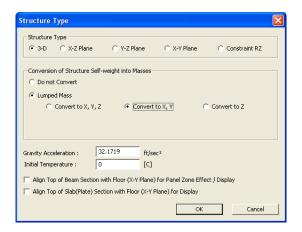
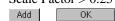



Figure 21: Convert Model Weight to Masses

Model > Masses > Loads to Masses

- Mass Direction > X, Y (on)
- Load Type for Converting > All (on)
- Gravity $> 32.1719 \text{ (ft/sec}^2\text{)}$
- Load Case > DL
- Scale Factor > 1
 - Add
- Load Case > LL
- Scale Factor > 0.25

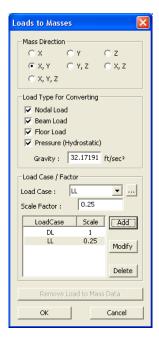


Figure 22: Covert Model Loads to Masses

Static Seismic Loads

Load > Lateral Loads > Static Seismic Loads

Add

- Load Case Name > EXP
- Seismic Load Code > IBC2000 (ASCE7-98)
- Seismic Design Category > E
- Site Class > C
- Ss = 1.0
- S1 = 0.3
- Importance Factor (I) = 1
- Period (Code) > X-Dir. = 1.2; Y-Dir. = 0
- Response Modification Coef. (R) > X-Dir. = 8 (Special moment frame),

Y-Dir. = 8 (Dual system: special reinforced concrete structural walls with special moment frame)

- Scale Factor in Global X = 1
- Scale Factor in Global Y = 0
- Accidental Eccentricity in X-direction > Positive (on)
- Accidental Eccentricity in Y-direction > Positive (on)

<u>A</u>pply

- Load Case Name > EXN
- Period (Code) > X-Dir. = 1.2; Y-Dir. = 0
- Scale Factor in Global X = 1
- Scale Factor in Global Y = 0
- Accidental Eccentricity in X-direction > Negative (on)
- Accidental Eccentricity in Y-direction > Negative (on)

<u>A</u>pply

- Load Case Name > EYP
- Period (Code) > X-Dir. = 0; Y-Dir. = 1.2
- Scale Factor in Global X = 0
- Scale Factor in Global Y = 1
- Accidental Eccentricity in X-direction > Positive (on)
- Accidental Eccentricity in Y-direction > Positive (on)

<u>A</u>pply

- Load Case Name > EYN
- Period (Code) > X-Dir. = 0; Y-Dir. = 1.2
- Scale Factor in Global X = 0
- Scale Factor in Global Y = 1
- Accidental Eccentricity in X-direction > Negative (on)
- Accidental Eccentricity in Y-direction > Negative (on)

<u>C</u>lose

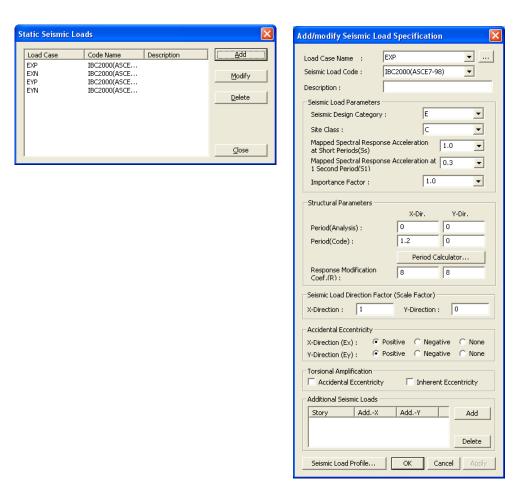


Figure 23: Input Static Seismic Loads

Response Spectrum Load

Load > Response Spectrum Analysis Data > Response Spectrum Functions

Add

Design Spectrum

- Design Spectrum > IBC2000 (ASCE7-98)
- Site Class > C

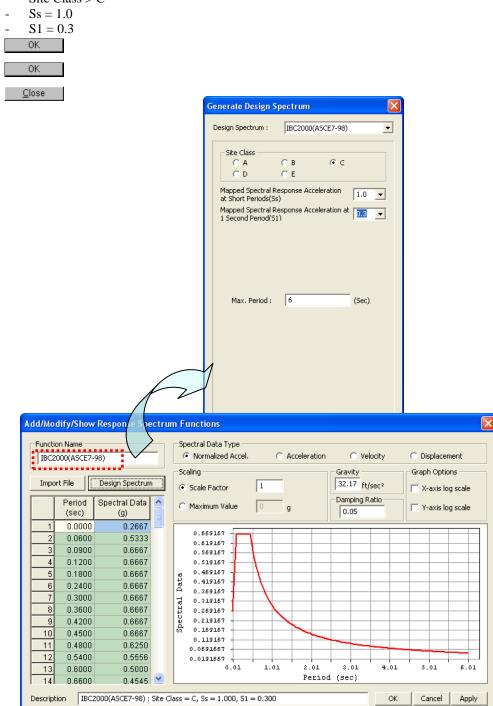


Figure 24: Response Spectrum Loads

Load > Response Spectrum Analysis Data > Response Spectrum Load Cases

- Load Case Name > RX
- Direction > X-Y
- Excitation Angle = 0 (deg.)
- Scale Factor (I/R) > 1/8 = 0.125
- Period Modification Factor = 1
- Function Name (Damping Ratio) > IBC2000(ASCE7-98) (0.05) > (on)
- Interpolation of Spectral Data > Linear (on)
- Accidental Eccentricity > (on)
- Modal Combination Type > SRSS

Add

- Load Case Name > RY
- Excitation Angle = 90 (deg.)
- Modal Combination Type > SRSS

<u>C</u>lose

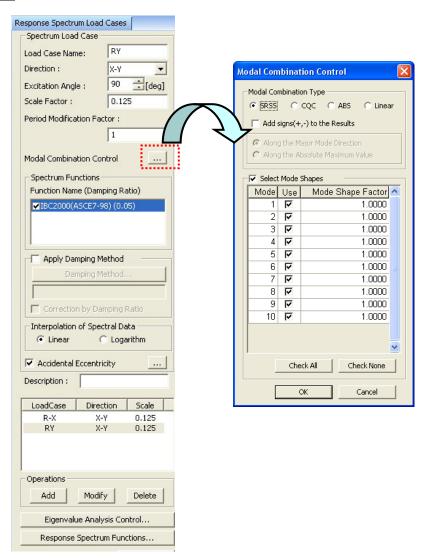


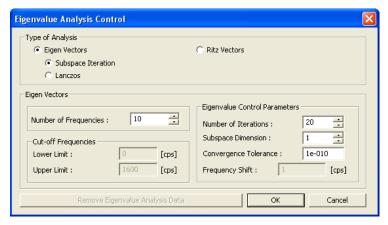
Figure 25: Response Spectrum Analysis

5. Analysis

Analysis > P-Delta Analysis Control

- Number of Iterations = 5
- Convergence Tolerance = 1e-005
- P-Delta Combination > Load Case > DL; Scale Factor > 1

P-Delta Combination > Load Case > LL; Scale Factor = 0.25


Add OK

Analysis > Eigenvalue Analysis Control

- Type of Analysis > Eigen Vectors (on) > Subspace Iteration (on)
- Number of Frequencies = 10
- Number of Iterations = 20
- Subspace Dimension = 0
- Convergence Tolerance = 1e-010

Perform Analysis

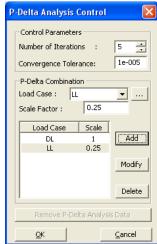
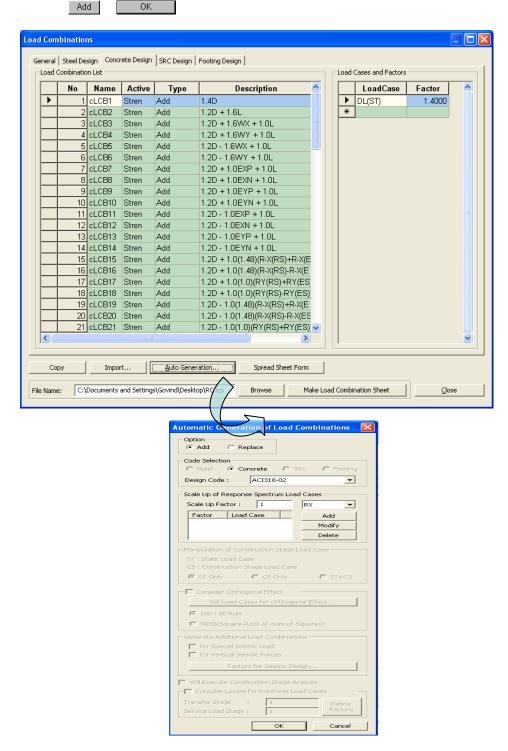


Figure 27: P-Delta and Eigenvalue Analysis Control


6. Design Input

Results > Combinations Concrete Design > Auto Generation

- Option > Add (on)
- Design Code > ACI318-02
- Scale Up Factor = 1.48; RX
- Scale Up Factor = 1; RY

Bi-directional combination needs to be investigated, but omitted in this tutorial.

......

Add

Figure 28: Generation of Load Combinations for Concrete Design

Compare RX (RY) with EX (EY)

RX (RY):

Results > Result Tables > Story > Story Shear (Response Spectrum Analysis)

- Spectrum Load Cases > RX(RS) (on) & RY(RS) (on)
- Shear Force (Without Spring)

			Inertia Force		Shear Force								
	Leve				Spring Reactions		Without Spring		With Spring		Eccentricity	Story	Eccentric
S	tory (ft)	Spectru	X (lbf)	Y (Ibt)	X (lbt)	Y (Ibt)	X (Ibt)	Y (lbt)	X (Ibf)	Y (Ibt)	(ft)	Force (lbf)	(ft·lbf)
Roo	f 148,00	00 RX(RS)	5,1709e+004	0,0000e+000	0,0000e+000	0,0000e+000	0,000000e+00	0,000000e+00	0,0000e+000	0,0000e+000	3,3000e+000	5,1709e+004	1,7064e+005
Roo	f 148,00	00 RY(RS)	1,0606e-005	8,2332e+004	0,0000e+000	0,0000e+000	0,000000e+00	0,000000e+00	0,0000e+000	0,0000e+000	9,1000e+000	8,2332e+004	7,4922e+005
12F	136,00	00 RX(RS)	6,6489e+004	0,0000e+000	0,0000e+000	0,0000e+000	5,170940e+00	0,000000e+00	5,1709e+004	0,0000e+000	3,3000e+000	6,6489e+004	2,1941e+005
12F	136,00	00 RY(RS)	1,3637e-005	1,0413e+005	0,0000e+000	0,0000e+000	1,060578e-00	8,233237e+00	1,0606e-005	8,2332e+004	9,1000e+000	1,0413e+005	9,4760e+005
11F	124,00	00 RX(RS)	5,7482e+004	0,0000e+000	0,0000e+000	0,0000e+000	1,159338e+00	0,000000e+00	1,1593e+005	0,0000e+000	3,3000e+000	5,7482e+004	1,8969e+005
11F	124,00	00 RY(RS)	1,1790e-005	7,9195e+004	0,0000e+000	0,0000e+000	2,377843e-00	1,858519e+00	2,3778e-005	1,8585e+005	9,1000e+000	7,9195e+004	7,2067e+005
10F	112,00	00 RX(RS)	5,3392e+004	0,0000e+000	0,0000e+000	0,0000e+000	1,634063e+00	0,000000e+00	1,6341e+005	0,0000e+000	3,3000e+000	5,3392e+004	1,7619e+005
10F	112,00	00 RY(RS)	1,0951e=005	6,5364e+004	0,0000e+000	0,0000e+000	3,351521e-00	2,614140e+00	3,3515e-005	2,6141e+005	9,1000e+000	6,5364e+004	5,9482e+005
9F	100,00	00 RX(RS)	5,3730e+004	0,0000e+000	0,0000e+000	0,0000e+000	1,993348e+00	0,000000e+00	1,9933e+005	0,0000e+000	3,3000e+000	5,3730e+004	1,7731e+005
9F	100,00	00 RY(RS)	1,1020e-005	6,6553e+004	0,0000e+000	0,0000e+000	4,088426e-00	3,139025e+00	4,0884e-005	3,1390e+005	9,1000e+000	6,6553e+004	6,0563e+005
8F	88,00	00 RX(RS)	5,4505e+004	0,0000e+000	0,0000e+000	0,0000e+000	2,273778e+00	0,000000e+00	2,2738e+005	0,0000e+000	3,3000e+000	5,4505e+004	1,7987e+005
8F	88,00	00 RY(RS)	1,1179e-005	7,5427e+004	0,0000e+000	0,0000e+000	4,663599e-00	3,515358e+00	4,6636e-005	3,5154e+005	9,1000e+000	7,5427e+004	6,8638e+005
7F	76,00	00 RX(RS)	5,6120e+004	0,0000e+000	0,0000e+000	0,0000e+000	2,509605e+00	0,000000e+00	2,5096e+005	0,0000e+000	3,3000e+000	5,6120e+004	1,8520e+005
7F	76,00	00 RY(RS)	1,1510e-005	8,2318e+004	0,0000e+000	0,0000e+000	5,147287e-00	3,840497e+00	5,1473e-005	3,8405e+005	9,1000e+000	8,2318e+004	7,4909e+005
6F	64,00	00 RX(RS)	5,7092e+004	0,0000e+000	0,0000e+000	0,0000e+000	2,720390e+00	0,000000e+00	2,7204e+005	0,0000e+000	3,3000e+000	5,7092e+004	1,8840e+005
6F	64,00	00 RY(RS)	1,1710e-005	8,2208e+004	0,0000e+000	0,0000e+000	5,579614e-00	4,189556e+00	5,5796e-005	4,1896e+005	9,1000e+000	8,2208e+004	7,4809e+005
5F	52,00	00 RX(RS)	5,8322e+004	0,0000e+000	0,0000e+000	0,0000e+000	2,923029e+00	0,000000e+00	2,9230e+005	0,0000e+000	3,3000e+000	5,8322e+004	1,9246e+005
5F	52,00	00 RY(RS)	1,1962e-005	7,3775e+004	0,0000e+000	0,0000e+000	5,995235e-00	4,581744e+00	5,9952e-005	4,5817e+005	9,1000e+000	7,3775e+004	6,7135e+005
4F	40,00	00 RX(RS)	5,7401e+004	0,0000e+000	0,0000e+000	0,0000e+000	3,125463e+00	0,000000e+00	3,1255e+005	0,0000e+000	3,3000e+000	5,7401e+004	1,8942e+005
4F	40,00	00 RY(RS)	1,1773e-005	5,8127e+004	0,0000e+000	0,0000e+000	6,410434e-00	4,979936e+00	6,4104e-005	4,9799e+005	9,1000e+000	5,8127e+004	5,2895e+005
3F	28,00	00 RX(RS)	5,3145e+004	0,0000e+000	0,0000e+000	0,0000e+000	3,331439e+00	0,000000e+00	3,3314e+005	0,0000e+000	3,3000e+000	5,3145e+004	1,7538e+005
3F	28,00	00 RY(RS)	1,0900e-005	3,8144e+004	0,0000e+000	0,0000e+000	6,832897e-00	5,321972e+00	6,8329e-005	5,3220e+005	9,1000e+000	3,8144e+004	3,4711e+005
2F	16,00	00 RX(RS)	3,9772e+004	0,0000e+000	0,0000e+000	0,0000e+000	3,522904e+00	0,000000e+00	3,5229e+005	0,0000e+000	3,3000e+000	3,9772e+004	1,3125e+005
2F	16,00	00 RY(RS)	8,1573e-006	1,8738e+004	0,0000e+000	0,0000e+000	7,225598e-00	5,556890e+00	7,2256e-005	5,5569e+005	9,1000e+000	1,8738e+004	1,7051e+005
1F	-0,00	00 RX(RS)	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000	3,665208e+00	0,000000e+00	3,6652e+005	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000
1F	-0,00	00 RY(RS)	0,0000e+000	0,0000e+000	0,0000e+000	0,0000e+000	7,517468e-00	5,673308e+00	7,5175e-005	5,6733e+005	0,0000e+000	0,0000e+000	0,0000e+000

Figure 29: Story Shear (Response Spectrum Analysis)

EX (EY):

Load > Lateral Loads > Static Seismic Loads Load Case > EXP > Modify > Seismic Load Profile

- Story Shear (on)

Similarly, select Load Cases EXN, EYP & EYN

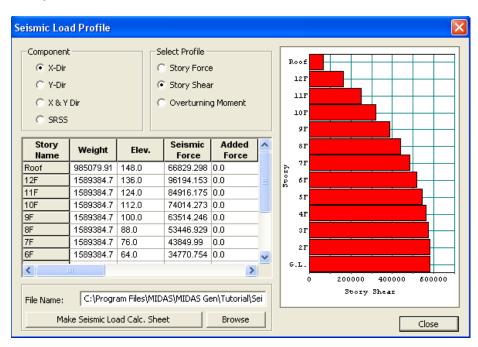


Figure 30: Story Shear (Static Seismic Loads)

Design > General Design Parameter > Definition of Frame

- X-direction > Unbraced | Sway (on)
- Y-direction > Braced | Non-Sway (on)
- Design Type > 3-D
- Auto Calculate Effective Length Factors > (on)

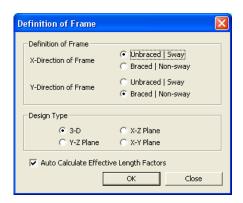


Figure 31: Definition of Frame

Design > General Design Parameter > Modify Live Load Reduction Factor General Tab

- Option > Add/Replace (on)
- Applied Components > Axial Force (on)
- Top View > Select Window
- Interior columns: Reduction Factor = 0.56

<u>A</u>pply

- Edge column: Reduction Factor = 0.69

<u>A</u>pply

- Corner column: Reduction Factor = 0.88

<u>A</u>pply

Figure 32: Modify Live Load Reduction Factor

- Unbraced Length (L, Lb)
- Option > Add/Replace (on)
- Unbraced Length > Ly=0; Lx=0
- Laterally Unbraced Length > Do not consider (on)
- Select All Apply
- Equivalent Moment Correction Factor (Cm)
- Option > Add/Replace (on)
- Moment Factor > Calculate by Program (on)
- Select All 🕲

Figure 34: Equivalent Moment Correction Factor

Figure 33: Unbraced Length

Design > Concrete Design Parameter > Design Code

- Design Code > ACI318-02
- Apply Special Provisions for Seismic Design > (on)
- Select Frame Type > Special Moment Frames (on)

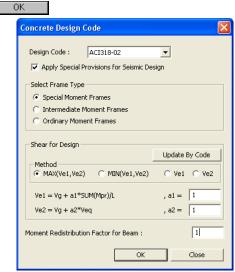


Figure 35 : Concrete Design Code

Design > Concrete Design Parameter > Strength Reduction Factors
- Update By Code

Figure 36: Strength Reduction Factors

Design > Concrete Design Parameter > Design Criteria for Rebars (Refer Figure 37)

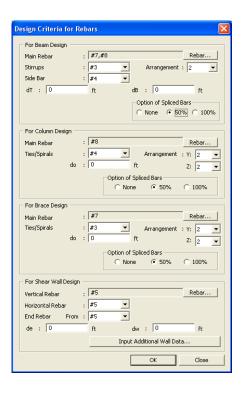


Figure 37: Design Criteria for Rebars

Design > Concrete Design Parameter > Modify Concrete Materials

Select material ID #1 Rebar Selection

- Code > ASTM (RC)
- Grade of Main Rebar > Grade 60
- Grade of Sub-Rebar > Grade 40



Figure 38: Modify Concrete Materials

7. Design Output

Design > Concrete Code Design > Beam Design Sorted by > Member (on)

Figure 39: Concrete Beam Design

Design > Concrete Code Design > Column Design Sorted by > Member (on) >>

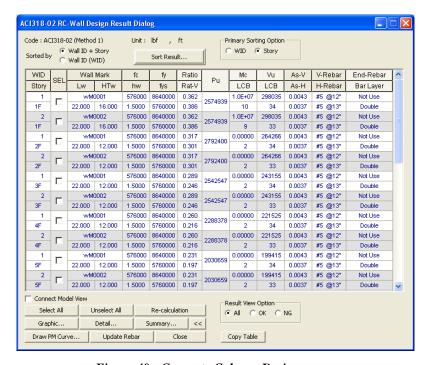


Figure 40: Concrete Column Design

Design > Concrete Code Design > Wall Design Sorted by > Wall ID + Story (on) >> SEL (Select) > WID (Wall ID) = 1; Story = 1F Graphic

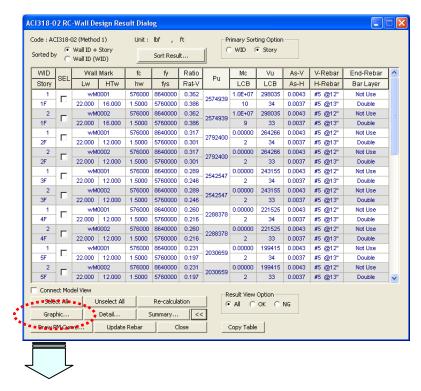


Figure 41: Concrete Wall Design

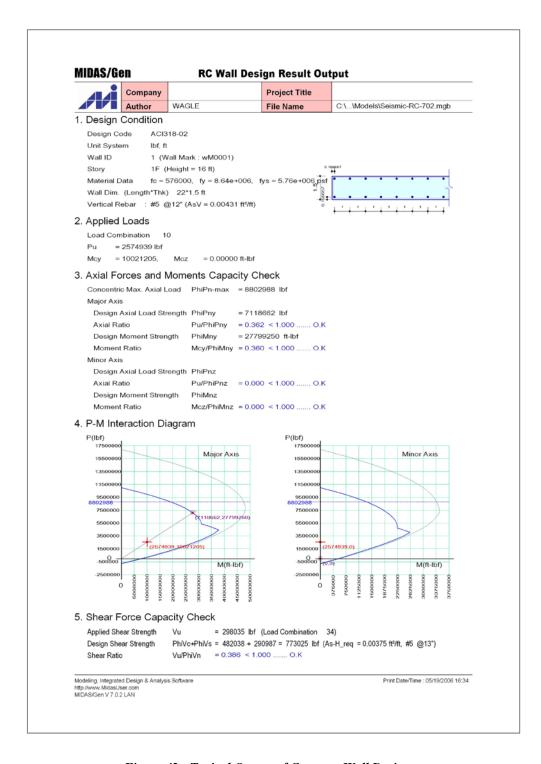


Figure 42: Typical Output of Concrete Wall Design