

Release Note

Release Date : Dec. 2024

Product Ver. : CIVIL 2025 (v1.1)

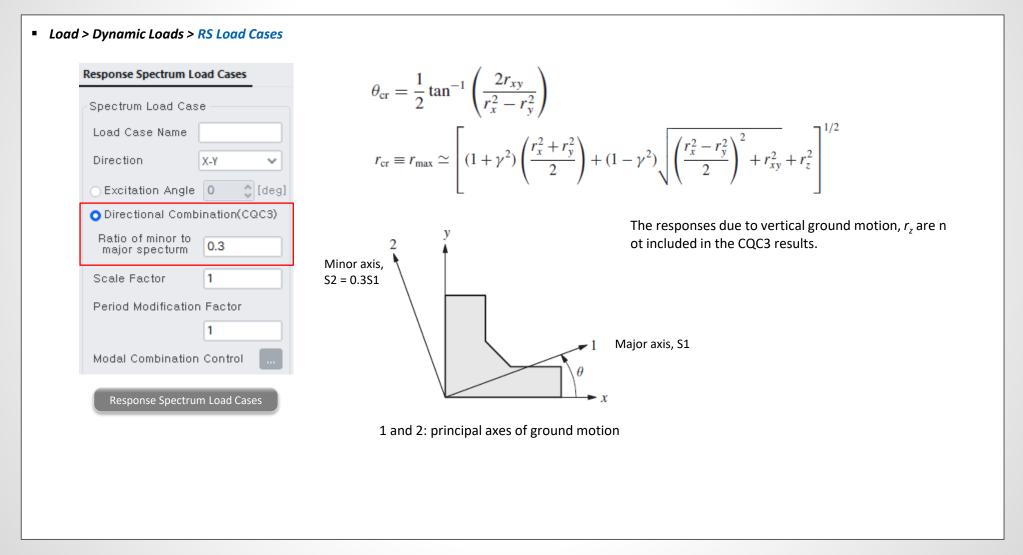
DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Sivil Engineering

Enhancements

Enhancements in CIVIL 2025 (v1.1)

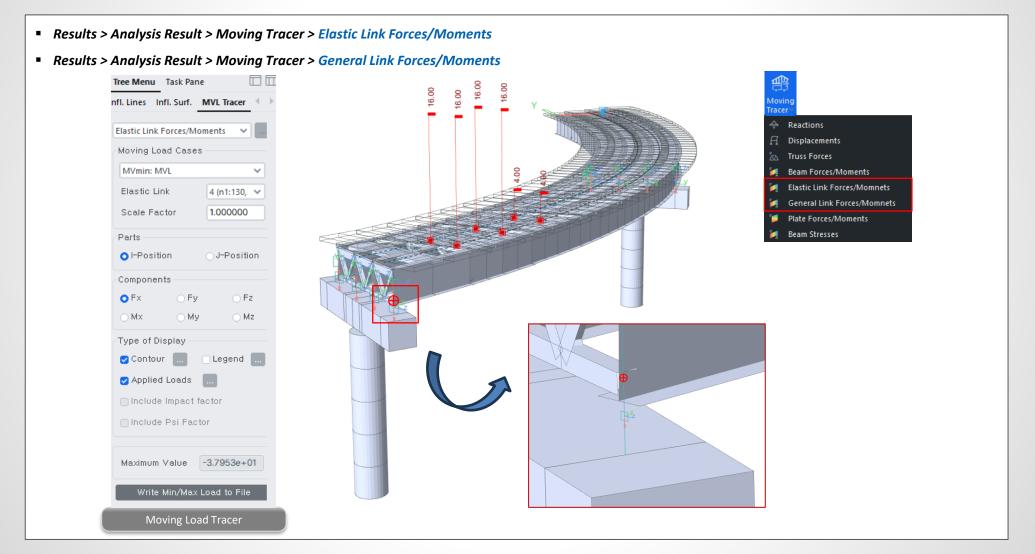
- Pre & Post processing
 - **1.CQC 3 Directional Combination for Response Spectrum**
 - 2.Considering Elastic/General Link Forces in Moving Load Tracer
 - 3.B-double rating vehicle as per AS 5100.7
 - 4. Considering two trucks for substructure members or Elastic/General Link as per AASHTO LRFD Vehicle Loads
 - 5. Moving patch load analysis as per AASHTO LRFD traffic loads
 - **6.IRC Fatigue Vehicle**
 - 7.Time Dependent Materials as per SP/M/022 v 3.4, AS5100.5:2017(Amd 2:2024) and AS3600:2018(Amd 2)
 - 8.Addition of Response Spectrum Function as per DPT.1301/1302-61:2018 and Eurocode Malaysia NA
 - 9.Addition of H and Channel shape section database as per EN 10365
 - 10.Addition of new Design Spectrum Database in Artificial Earthquake Data Generator
 - **11.Addition of Element Stiffness Scale Factor**


- Design

- 12. RC Design for 1D Beam & Column, Plate Beam & Column as per BS 5400
- 13. RC & Steel Design as per CSA S6:19
- 14. Response Modification Factor by members and components as per AASHTO LRFD
- 15. Addition of an option "Long-term Section Property of Cracked Composite Section: Rebar Area/3" as per AASHTO LRFL

CIVIL 2025 Pre & Post-Processing

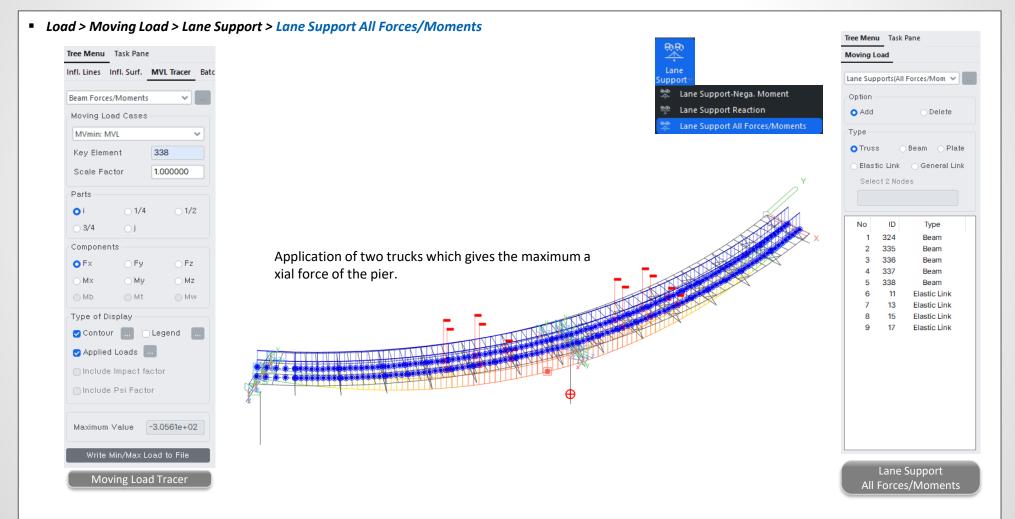
1. CQC 3 Directional Combination for Response Spectrum


- The CQC3 rule has been developed to estimate the peak value of the combined response due to simultaneous application of the principal components of ground motion.
- The user defines the ratio (y) of minor to major spectrum, and the program finds the critical angle and provides the maximum response for each component.

CIVIL 2025 Pre & Post-Processing

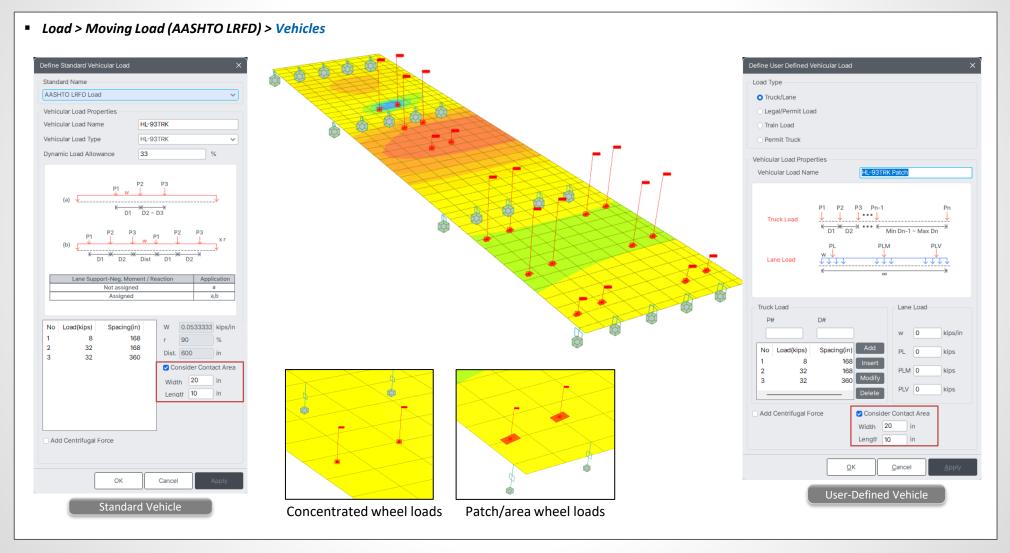
2. Considering Elastic/General Link Forces in Moving Load Tracer

- Bridge bearings are often simulated with Elastic Links or General Links to represent the stiffness of the bearings.
- Now, Moving Load Tracer supports Elastic Links and General Links to find the critical position of the vehicle loads and to convert it into equivalent static loads.

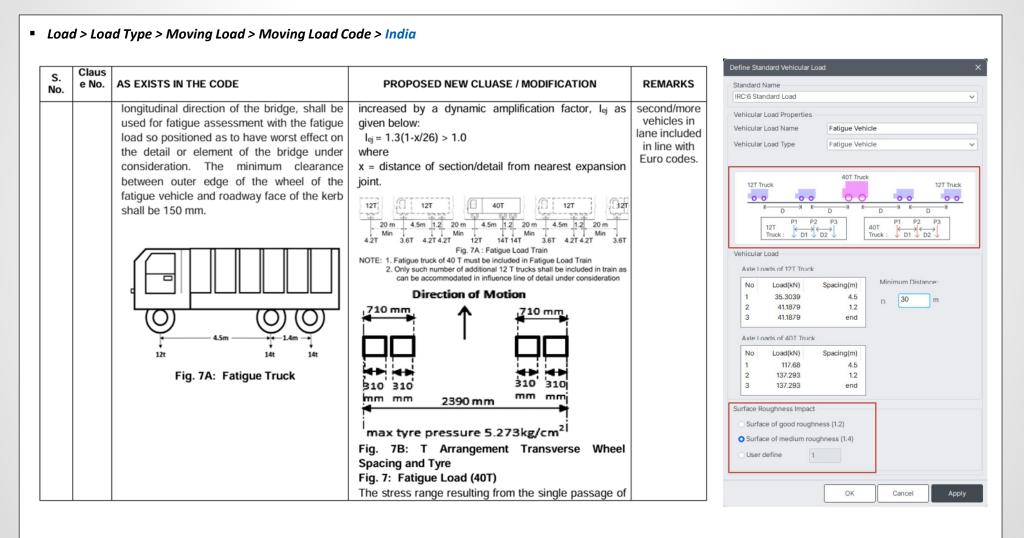

3. B-double rating vehicle as per AS 5100.7

- A B-double is defined in the Heavy Vehicle National Law (HVNL) as a combination consisting of a prime mover towing two semitrailers.
- New B-double assessment vehicle DB for Queensland(QLD) and Victoria(VIC) is now available. More than 2 B-double vehicles can be loaded by checking on the option in Moving Load Analysis control.

Load > Moving Load > Moving Define Moving Load Case	Moving Load Analysis Control Data	
Load Case Name QLD50.5 8G1	Truck/Train Load Control Option	
Description	Exact O Pivot O Quick	
Moving Load Optimization	Load Point Selection	
Select Load Model	Influence Line Dependent Point All Points	
O Fatigue	Influence Generating Points	
O Heavy Load Platform	Number/Line Element 3	
O Rail Traffic Load	O Distance between Points 0.3 m	
O B-Double Load		
Accompanying Lane Factor Num of Loaded Lanes Scale Factor 1 1 2 0.8 3 or more 0.4 Load Case Data B-Double Load QLD-50.5T 8G1 GML 19m B v M1600 or S1600 \$S1600 v Assignment Lanes v Loaded Lane of M1600 or S1600 Min. Number of Loaded Lanes Max. Number of Loaded Lanes 1 Line of Lanes Selected Lanes Line of Lanes B-Double Lanes Line of Lanes Line Line of Lanes Line	Analysis Results Plate Center Center Center + Nodal Stress Concurrent Force Concurrent Force Concurrent Force Calculation Filters Reactions All Group Forces/Moments All Group	Define Standard Vehicular Load X Standard Name AS 5100.7 - Rating Vehicles AS 5100.7 - Rating Vehicles V Vehicular Load Properties QLD-50.5T 8G2 GML 19m B DOUBLE Vehicular Load Type QLD-50.5T 8G2 GML 19m B DOUBLE Itat truck Load Itat truck Load Itat truck Load Itat truck Load U-68.5T HML B DOUBLE VC-68.5T HML B DOUBLE VC-68.5T MML B DOUBLE VC-68.5T MML B DOUBLE Itat truck Load VC-68.5T MML B DOUBLE UD-50.5T 8G2 GML 19m B DOUBLE VC-68.5T MML B DOUBLE VD-50.5T 8G1 GML 19m B DOUBLE VC-68.5T MML B DOUBLE Itat Sa 8 Slow Moving (8.0 m) 1 63.8 Slow Moving (17.0 m) 1 63.8 Normal Moving (17.0 m)
L5 L6 → →	C Elastic/General Links	4 67.5 1.2 Description of Allowance National Class 2 B-double
	• All Group 🗸	5 67.5 5.5 6 67.5 1.2 O Auto User 0.4 Operator's Guide
	Apply Multiple B-Double Trucks in the Same Lane Maximum Successive Vehicles 10	7 67.5 end May 2019
OK Cancel Apply	OK Cancel	OK Cancel Apply
Moving Load Cases	Moving Load Analysis Control	MB-double Vehicles

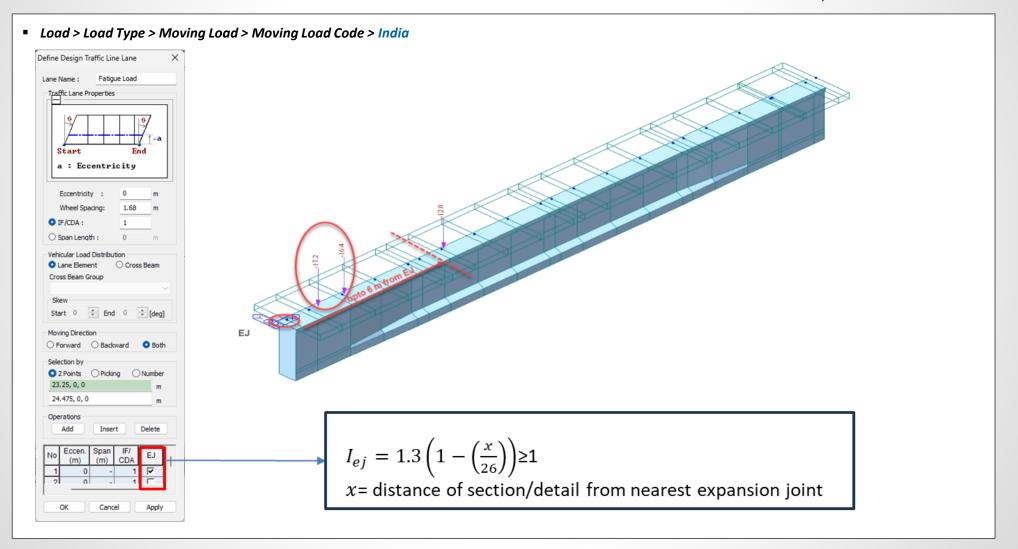

4. Considering two trucks for substructure members or Elastic/General Links as per ASHTO LRFD vehicle loads

- Although AASHTO LRFD says, "For negative moment between points of contraflexure under a uniform load on all spans, 90 percent of the effect of two design trucks combined with 90 percent of the effect of the design lane load, force components other than negative moment need to be determined based on the two-truck rule in some projects.
- Now, it is possible to select elements or links to apply the two-truck rule to obtain maximum results for all force components in moving load analysis.

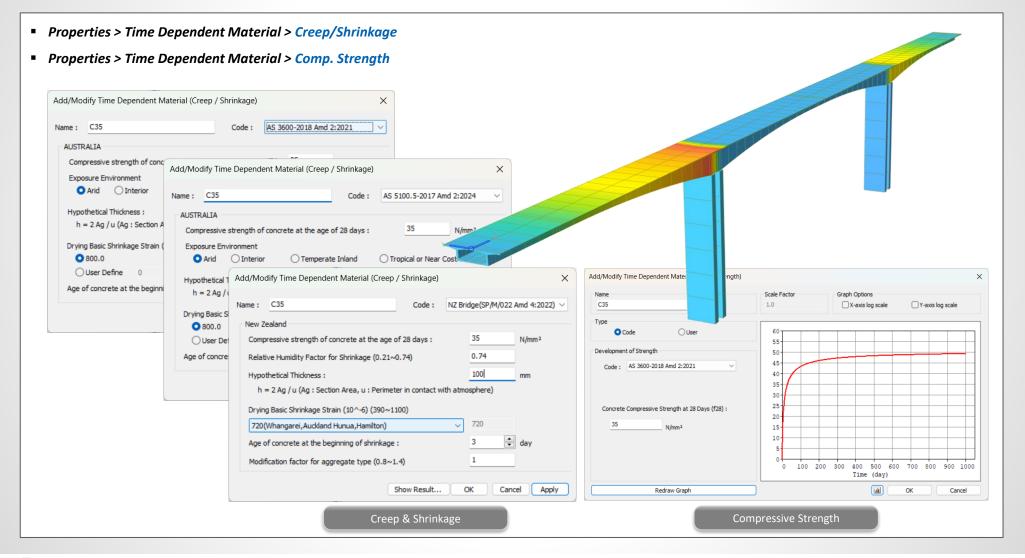

5. Moving patch load analysis as per AASHTO LRFD traffic loads

- The tire contact area of a wheel can be applied during moving load analysis. In this version, HL-93TRK, HL-93TDM, and HS20-FTG vehicles of AASHTO LRFD are only supported.
- The design forces of plate elements can be noticeably reduced with the patch/area loads compared to concentrated wheel loads.

6. Fatigue Vehicle to IRC 6 : Standard Load


- Fatigue Vehicle has been added to existing vehicle library of IRC 6: Standard Load as per latest amendment to IRC: 6 Fatigue Load Clause 204.6.
- For assessment, impact factor has been replaced with surface roughness impact depending upon type of surface.

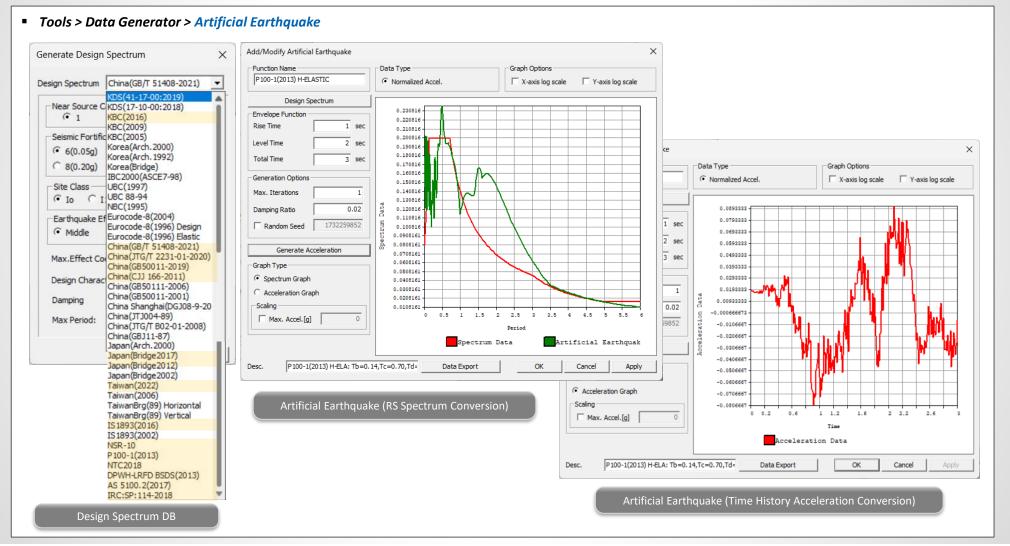
MIDAS


6. Fatigue Vehicle to IRC 6 : Standard Load

- The Traffic Lane Definitions now include an "EJ" checkbox for specifying expansion joint locations.
- For sections/ details within 6.0 m of the expansion joint, the fatigue load arrived as above shall further be increased by a dynamic amplification factor, I_{ei}.

7. Time Dependent Materials as per the latest Australian and New Zealand Standards

Time Dependent Materials (Creep, Shrinkage and Compressive Strength) as per the following Australian and New Zealand Standards are updated: SP/M/022 v 3.4, AS5100.5:2017(Amd 2:2024) and AS3600:2018(Amd 2).

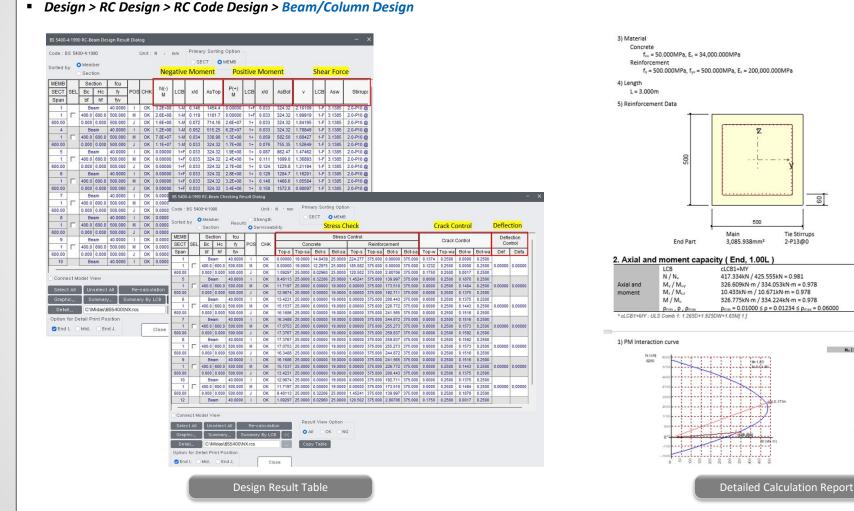

8. Addition of Response Spectrum Function as per DPT.1301/1302-61:2018 and Eurocode Malaysia NA

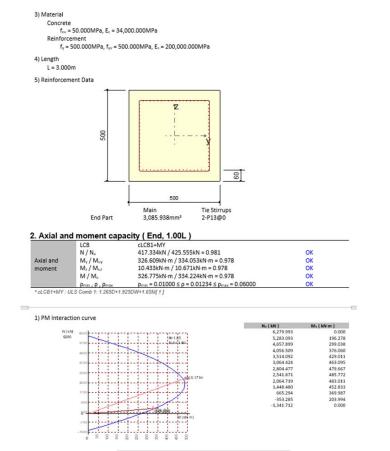
• Design Spectrums for Thailand specifications(DPT.1301/1302-61:2018) and Eurocode Malaysian National Annex are added.

n Spectrum DPT.1301/1302-61:2018		
gion		
Bangkok ORegeion except Bangkok	Generate Design Spectrum X	Add/Modify/Show Response Spectrum Functions
thodBy Table 1.4-4-5	Design Spectrum Eurocode-8(2004)	Function Name Spectral Data Type EUR02004 H-ELASTIC • Normalized Accel. • Acceleration • Velocity • Displacement
smic Zone	National Annex Malaysia V	Import File Design Spectrum Scaling Gravity Graph Options
smic Zone 1 🗸	Spectrum Type Horizontal Elastic Spectru 🗸	Period Spectral Data O Scale Factor 1 9.806 m/sec ² X-axis log scale
e Class Sd 🗸 Dy Code	Ground Type B v Region Peninsular v Spectrum Parameters	(sec) (g) 1 0.0000 0.1120 2 0.0500 0.2800 3 0.0600 0.2800
0.750 🗸 S1 0.300 🗸	Shallow O Deep S O User Defined	4 0.1200 0.2800 5 0.1800 0.2800
1.2 Sd: 0.6 g	Soil Factor (S) Tb Tc Td	6 0.2400 0.2800 7 0.3000 0.2800
1.8 Sd1 0.36 g	1.4 0.05 0.3 2.2	8 0.3600 0.2333 0.198128 9 0.4200 0.2000 5
egory	Ref. Peak Ground Acc. (AgR) 0.08 g	10 0.4800 0.1750
k Category II 🗸		11 0.5400 0.1556 12 0.6000 0.1400 0.0981275
oortance 1.00 v	Importance Factor (1) 1.0 V	13 0.6600 0.1273 14 0.7200 0.1167
ictural Parameters	Viscous Damping Ratio (xi) 5 %	15 0.7800 0.1077 0.0481275
sponse Mod. Factor 4.00 v		16 0.8400 0.1000 17 0.9000 0.0933
nping Ratio 0.025 v	Max. Period 6 (Sec)	18 0.9600 0.0875 0.01 1.01 2.01 3.01 4.01 5.01 6.01 19 1.0200 0.0824 Period (sec) Period (sec) Period (sec) Period (sec)
		Description EUR02004 H-ELA: G=B,S=1.40,Tb=0.05,Tc=0.30,Td=2.20,AgR=0.08g,I=1.0,Damping=5.00
OK Cancel	OK Cancel	OK Cancel Apply

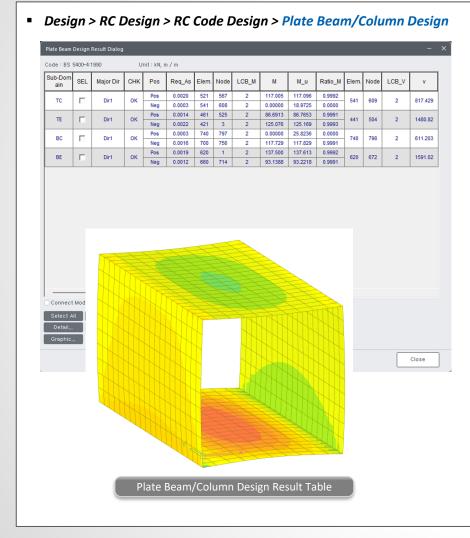
9. Addition of new Design Spectrum Database in Artificial Earthquake Data Generator

AGS (Artificial Data Generation System for windows) extracts artificial earthquake and design response spectrum using the design spectrum of each standard. Following design spectra are now added: Taiwan (2022), IS1938(2016), NSR-10, P100-1(2013), NTC 2018, DBWH-LRFD BSDS(2013), AS 5100.2(2017), IRC:SP:114-2018, KBC(2016), China (GB/T 51408-2021), China(JTG/T 2231-01-2020), China (GB50011-2019), China (CJJ 166-2011), Japan(Bridge2017), Japan(Bridge 2012)


10. Addition of Element Stiffness Scale Factor


Apply scale factors to the cross-sectional linear elements (Truss, Tension-only, Compression-only, Cable, Gap, Hook & Beam Elements). Specific stiffness may be reduced such as the case
where the flexural stiffness of girders in the negative moment region may require reduction to reflect cracked sections of concrete.

11. RC Design for 1D Beam & Column, Plate Beam & Column as per BS 5400


- Design and checking of RC frame elements to BS 5400 are newly introduced in midas.
- This feature can be applied to piers or RC beams.

12. RC Design for 1D Beam & Column, Plate Beam & Column as per BS 5400

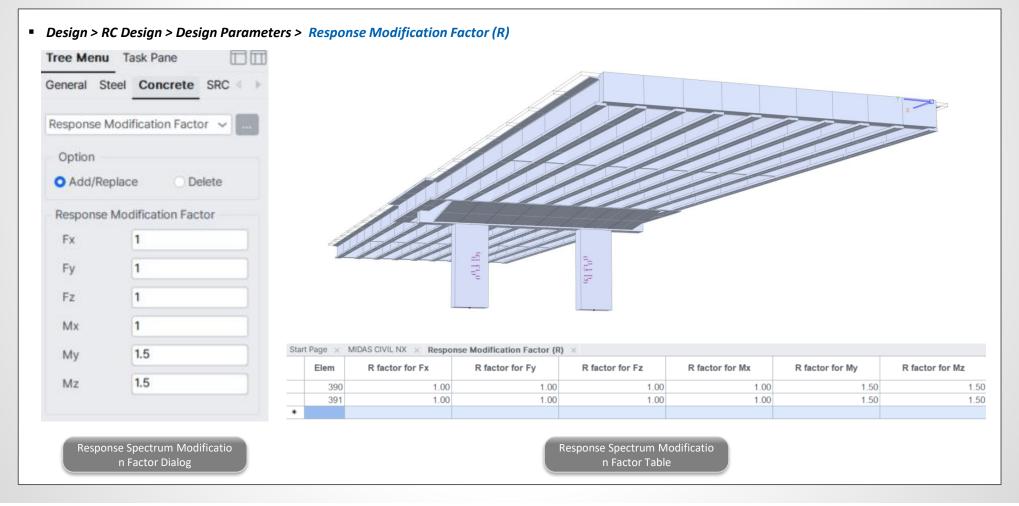
- Design and checking of RC plate elements to BS 5400 are newly introduced in midas.
- This feature can be applied to culvert, pier walls or slabs where the stresses are distributed in one way.

Preview Window					-	. 🗆	×
Name : TC(Dir1)	Print	🖨 Print All	물 Close	🖬 Save			
. Design Condit	ion						
Design Type	Plate Beam (1D)						
Sub-Domain	TC						
Design Code	BS 5400-4:1990						
Unit System	kN, m, / m						- 1
Material Data	fcu = 24000, fy =	460000, fyv =	250000 KPa				
Thickness	0.23 m						
2. Section Diagra	am						- 1
. coolion biagra							- 1
121			Element No	521			
8		4	2.0.1.1.1				
° 👘							
Rebar Pattern	Top Required Reb	ar Area = 0.0002	27 m²/m				
	Bot Required Reba						
	Required Stirrups						
			0				
B. Bending Mom	ent Capacity						
			Top(Negative)		Bottom(Positive	e)	
Mu			0.00		117.01		
Element No.			541		521		
Load Combination			cLCB2		cLCB2		
Mr			18.97		117.10		
Check Ratio (Mu/Mr)		0.0000		0.9992		
. Shear Capacit	tv						
Element No.	541						
	cLCI	D2					
Load Combination		82 = 817.4	120				
Applied Shear Resi				- 1441 67			
Shear Strength (Out			654 v_ur	= 1441.67			
Required Stirrups S		4004 m		0.050			
Shear Ratio	v/v_	u = 817.4	429 / 2338.32	= 0.350 < 1.	000 0.1	К	
						_	
		Dista	Deeve Dee	ign Summa		_	

13. RC & Steel Design as per CSA S6:19

• RC member design and steel member design have been updated as per CSA S6: 19.

concrete Design	n Code ×		
esign Code	CSA-S6-19 Y		- 0
Apply Specia	al Provisions for Seismic Design 🤌 Print All 📲 Close 🛛	🚽 Save	
/oment Redisti	ribution Factor for Beam	1	0.6
	OK Close		•••••
	Material Data fc' = 40000, fy = 500000, fys = 500000 KPa		
	Column Height 3 m		• 50
	Section Property Column (No : 2)	•	•
	Rebar Pattern Pos 1 Pos 2 Pos 3	-	
	Layer 1 6-20M 4-20M		<u>↓</u>
	Total Rebar Area Ast = 0.006 m ² (pst = 0.0240)		0.08
	2. Applied Loads		
	Load Combination 2+MY AT (J) Point		
		0.00000, Mc	= 490.987 kN-m
	Axial Forces and Moments Capacity Check		
	Concentric Max. Axial Load Pr-max = 6362.10 kN		
	Axial Load Ratio Pf/Pr = 602.813 / 751.21		< 1.000 0.K
	Moment Ratio Mcy/Mry = 490.987 / 607.46		< 1.000 0.K
	Mcz/Mrz = 0.00000 / 0.0000		< 1.000 0.K
	Mc/Mr = 490.987 / 607.46	8 = 0.808	< 1.000 0.K
	4. P-M Interaction Diagram	Pr(kN)	Mr(kN-m)
	P(kN) 8500	8482.80	0.00
	e=0.00*	6335.24	398.73
	7875 N.A=0.00*	5397.81	515.04
	6362000	4590.17	590.63
	6125	3899.77	642.29
	4000	3310.80	680.06
	2875	2798.89	710.00
	1760	2444.59	713.99
		2126.83	708.71
	605 0 (008;481(751,807)	1778.11	695.57
	-600 M(kN-m)	1340.40	664.33
	-1625	772.65	609.93
	-2760	-8.90	509.58
		-1184.28	309.16
	78 62 73 63 73 74 0 2 62 73 63 63 74 0 2 64 75 0 2	-2700.00	0.00


Design > Steel Design > Design Code Option

l Design Code	×
gn Code CSA-S6-1	19
l Beams/Girders are Lat	
neck Beam/Column Defl	
ОК	Close 8
	(Fy = 344738, Es = 199948024)
	Arch Rib (No:3)
	(Built-up Section).
	5.38516 : Section for Design as Width-Thickness Ratio exceeds Code Provisions.
- Bac Enfoctive	
2. Member Force	
Axial Force	Fxx = -6803.4 (LCB: 1-MZ, POS:J) Area 0.03510 Asz 0.01920
Bending Moments	My = -312.16, Mz = -194.72 0yb 0.11781 0zb 0.14044 lyy 0.00194 1zz 0.00207
End Moments	Myj = -302.26. Myj = -312.16 (for Lb) Ybar 0.30000 Zbar 0.30000
	Myi = -302.26, Myj = -312.16 (for Ly) ry 0.00647 Szz 0.00688 0.24254
	Mzi = -67.229, Mzj = -194.72 (for Lz)
Shear Forces	Fyy = -17.868 (LCB: 1-MZ, POS:I)
	Fzz = -51.871 (LCB: 1-MZ, POS:1)
3. Design Param	eters
Unbraced Lengths	Ly = 5.38516, Lz = 5.38516, Lb = 5.38516
Effective Length Fac	tors Ky = 1.00, Kz = 1.00
Moment Factor / Ben	iding Coefficient
	w1y = 1.00, w1z = 1.00, w2 = 1.00
4. Checking Resu	ults
Slenderness Ratio	
KL/r	= 26.2 < 160.0 (Memb:1, LCB: 1+FX)0.K
Axial Strength Cf/Cr	= 6803.4/10868.6 = 0.626 < 1.0000.K
Bending Strength	- 0803.4/10808.0 - 0.020 × 1.000 0.K
Mfy/Mry	= 312.16/2008.03 = 0.155 < 1.0000.K
Mfz/Mrz	= 194.72/2135.72 = 0.091 < 1.0000.K
Combined Resistance	e (Compression+Bending)
Rmax1 =	Cf/Cr + U1y+Mfy/Mry + U1z+Mfz/Mrz
	Rmax1 = 0.886 < 1.000 0.K
Shear Resistance	
Vfv/Vrv	= 0.00D < 1.000 0.K
Vfz/Vrz	= 0.015 < 1.000

Steel Design Summary Report

14. Response Modification Factor by members and components as per AASHTO LRFD

- Seismic design force effects for substructures shall be determined by dividing the force effects resulting from elastic analysis by the appropriate response modification factor, R.
- In the previous version, only a single response modification factor could be applied. However, the current version allows for the application of response modification factors based on substructure types and load components.
- Applicable Code: AASHTO-LRFD

15. Addition of an option "Long-term Section Property of Cracked Composite Section: Rebar Area/3" as per AASHTO LRFD

- In previous versions, the long-term section properties of the composite girder subjected to negative moment were calculated as "Steel Section + Long. Reinforcement/3".
- Now, an option is added to determine the section properties as "Steel Section + Long. Reinforcement".

Design > Composite Design > Design Code Option

Comp	osite Steel Girder Design Code		:
Code	AASHTO-LRFD20 🗸		Update by Code
Strer	ngth Resistance Factor		
Resis	stance factor for yielding (Phi_y)		0.95
Resis	stance factor for fracture(Phi_u)		0.8
Resis	stance factor for axial comp.(Phi_c)		0.9
Resis	stance factor for flexure (Phi_f)		1
Resis	stance factor for shear(Phi_v)		1
Resis	stance factor for shear connector(Phi_	sc)	0.85
Resis	stance factor for bearing(Phi_b)		1
Girde	er Type for Box/Tub Section		
) Sir	ngle Box Sections O Multi	ole Box Sections	
🔽 Co	onsider St.Venant Torsion and Distortio	on Stresses	
Optic	on For Strength Limit State		
🔽 Ap	opendix A6 for Negative Flexure Resis	tance in Web Comp	pact
1	NonCompact Sections		
🛃 Mi	n<=1.3RhMy in Positive Flexure and C	ompact Sections(6.	10.7.1.2-3)
🔽 Po	st-buckling Tension-field Action for S	hear Resistance(6.1	10.9.3.2)
🗆 Lo	ng-term Section Property of Cracked	Composite Section:	: Rebar Area/3
🕑 Ind	clude Normal Stress due to Torsional	Warping	
Desig	gn Parameters		
🕑 Sti	rength Limit State-Flexure		
🗸 Sti	rength Limit State-Shear		
	ervice Limit State		
✓ 38	onstructibility		
-	manucubinty		
Co	tigue Limit State		

Composite Steel Girder Design Code Option

	A	В	С	D	Е	F	G	H		J	K	L	М	N	0	P	Q	R	S	Т	U	۷	W	X	Y	Z	AA	AB	AC
121																													
122		3)) Long-term Composite Section																										
123			(Es/Ec = 3n																										
124			A _(n) (mm ²) 114055.580							l _{yi}	I _{y(n)} (mm ⁴) 84815877315.974						I _{z(n)} (mm ⁴) 20571628095.4						.453						
125			d _{Top(n)} (mm) 693.811						d _{Bo}	d _{Bot(n)} (mm) 1185.789																			
126			S _{Top(n)} (mm ³) 122246331.502						S _{Bo}	_{t(n)} (m	1m3)	71	5269	969.4	59													
127			SL(r) (m	m³)		80	990	661.7	793		SR	_{in)} (mi	m³)		80	9906	61.7	'93										
128			W ₁₀	₀ (m	m²)		-	1013	38.24	11		W ₂	_(n) (m	m²		1	013	8.29	D			l _{w(n)}	(mn	2.751341E+15					
129			W3(r	W _{3(n)} (mm²) 488492.120				W4	_(n) (m	m²		-4	8849	91.49	91														
130																													
131		4)	Shor	t-te	rm C	Comp	posit	e Se	ction	(Lor	ng. R	einfo	rcem	nen	t)														
132			A _{(R}	(mr	m²)		1	006	01.41	12		l _{y(R)} (mm⁴)				73165083170.475					l _{z(R)} (mm⁴)			10775758973.804					
133			d _{Top}	_(R) (n	nm)			810	.378			d _{Bot(R)} (mm))	1069.222													
134			STop	_(R) (n	nm³)		90	285	105.8	310		S _{Bot(R)} (mm³))	68428350.798													
135			SL(F) (m	m³)		42	424	247.9	928		S _{R(R)} (mm³)				42	4242	47.9	28										
136			W ₁₀	_ს (m	m²)			0.0	000			w _{2(R)} (mm²)				0.000						l _{w(R)}	(mn		0.0	0000	00E+	-00	
137			W36	₀ (m	m²)			0.0	000			W4	_(R) (m	m²			0.0	00											
138																													
139		5)	Long	j-tei	rm C	omp	oosit	e Se	ction	(Lon	g. Re	einfo	rcem	nent	i)														
140			A _(R)	₀ (m	m²)		1	006	01.41	12		l _{y0}	_{ദ്വ} (m	m⁴)		73165083170.475				l _{z(R}	₃)(m i	m⁴)		1077	575	8973	.804		
141			d _{Top}	_(R3) (I	nm)			810	.378			d _{Bo}	_{t(R3)} (n	nm)		1069).222	2										
142			S _{Top} (_{R3)} (n	nm³)		90	285	105.8	310		SBot	_(R3) (n	nm	3)	68	4283	350.7	'98										
143			S _{L(R}	₃₎ (m	m³)		42	424	247.9	928		S _{R(}	_{R3)} (m	m³)	42	4242	47.9	28										
144			W ₁₍₃)(m	nm²)		-	1013	38.24	11		W ₂₍	_{3R})(m	۱m²)	1	013	8.29	D			l _{w(3R)}	(mn		2.	7513	41E+	-15	
145			W ₃₍₃₎)(m	nm²)		4	884	92.12	20		W4(_{3R})(m	nm²)	-4	8849	91.49	91										

Design Report