
Release Note

 Release Date: Jan. 2025

 Product Version : GEN 2025 (v1.2)

 DESIGN + 2025 (v1.1)

Integrated Design System for Building and General Structures

Index

GEN

- NMX 2023 & NTCS 2023 (New Mexican design code) : See Appendix 01
- <u>Russian Standard (New Design Code)</u> : <u>See Appendix 02</u>
- <u>BS 5950-2000 (New Steel Design Code)</u> : Added Steel Design as per BS 5950-2000
- NSCP 2015 (Add New Features)
- <u>ETC</u>
 - 1. Add Combined Type for Cold-Formed Section
 - 2. Fix Bugs of Lateral Loads as per DTP (Thailand)
 - 3. Addition of "Master Design" as New Interface (Only for Italy)
 - 4. Improvement of Gen-IDEA statica Connection Interface (Load Combinations)
 - 5. Addition of New Rebar DB

DESIGN+

- <u>RC Column Design for Pipe Shape</u>
- Improvement of Retained Wall Design
- ETC : Addition of New Rebar DB

01 : Revised provisions reflected in Gen of NTC & NMX 2023 02 : Implemented Russian code in midas Gen

GEN

1. Added the rebar size & material DB of <u>NMX 2023</u> (Mexican design code)

Tabla 2.2.1 - Clases y propiedades de los concretos estructurales convencionales

Requerimiento (inciso de referencia)	Método de ensayo	Co. 1A	acreto Clase 1 1B	Concreto Clase 2
Resistencia a la compressón, f ² _c (2.2.6)	NMX-C-083- ONNCCE-2020	$25 \le f_c^* < 40 \text{ MPa}$ (250 $\le f_c^* < 400 \text{ kg/cm}^3$)	$40 \le f_c^* \le 70 \text{ MPa}$ $(400 \le f_c^* \le 700 \text{ kg/cm}^2)$	$20 \le f_{\phi}^2 \le 35 \text{ MPn}$ ($200 \le f_{e}^2 \le 350 \text{ kg/cm}^2$)
Resistencia media a la tensión, \overline{f}_t (2.2.7)	NMX-C-163- ONNCCE-2019	$0.47\sqrt{f_{e}^2}$, en MPa $(1.5\sqrt{f_{e}^2}$, en kg/cm ²)	 Concretos con agregado grueso calizo. 0.53 √f²_e, en MPa (1 67 √f²_e, en kp/cm³) Concretos con agregado grueso basáltico: 0.47 √f²_e, en MPa (1.50 √f²_e, en Mpa (1.50 √f²_e, en kp/cm²) 	0.18 $\sqrt{f_c^2}$, en MPa (1.2 $\sqrt{f_c^2}$, en kg/cm ⁵)
Resistencia media a la tensión por flexión o módulo de rotura, $\widetilde{f_{f}}$ ((2.2.7)	NMX-C-191- ONNCCE-2015	$0.63\sqrt{f_{e}^2}$, en MPa $(2\sqrt{f_{e}^2})$, en kg/em²)	 Concretos con agregado grueso calizo: 0.85 √f²_e, en MPa (2.70 √f²_e, en kg/cm²) Concretos con agregado grueso basáltico: 0.80 √f²_e, en MPa (2.54 √f²_e, en kg/cm²) 	$0.44\sqrt{f_c^2}$, en MPa $(1.4\sqrt{f_c^2}$, en kg/cm ²)
Peso volumétrico en estado fresco (2.2.2)	NMX-C-162- ONNCCE-2014		> 22 kN/m ³ 2 200 kg/m ³)	$19 \le peso vol \le 22 \text{ kN/m}^3$ (1 900 $\le peso vol \le 2 200 \text{ kg/m}^3$)
Módulo de elasticidad, <i>E</i> r (2.2.8)	NMX-C-128- ONNCCE-2013	 Concretos con agregado grueso calizo. 4 400√f_c², en MPa (14 000√f_c², en kg/cm²) Concretos con agregado grueso bashlico: 3 500√f_c², en MPa (11 000√f_c², en kg/cm²) 	 Concretos con agregado grueso calizo: 2 700√f_t² + 11 000, en MPa (0 500√f_t² + 110 000, en kg/cm²) Concretos con agregado grueso basáltico. 2 700√f_t² + 5 000, en MPa (8 500√f_t² + 50 000, en kg/cm²) 	2.500 $\sqrt{f_{c}^{2}}$, en MPa (8.000 $\sqrt{f_{c}^{2}}$, en kg/cm ²)
Contracción por secado, s _{of} (2.2.9) Coeficiente de flujo	NMX C-173- ONNCCE-2010 ASTM	≤ 0.001	≤ 0.0006	≤ 0.002 4
plástico, C _r (2.2.10) Aplicaciones	C512/C512M-15		2 ucturas del grupo A, B1 y B2. rrimientos de dumbilidad	 Es neoptable el uso en estructuras del grupo B2 que cumplan con todo lo siguiente: Claros no mayores que 4 m Altura total de no más de 5 m en dos mveles, sobre nivel de banqueta y Estructuras de no más de 120 m² de construcción.

				×	
eneral					
Naterial ID 1		Name			
lasticity Data					
Type of Design Concret	te 🗸	Steel			
		Standard			
		DB	×		
600		Product	×		
		Concrete			
		Standard	EN04(RC) V		
Type of Material	rthotropic	C	o None ASTM19(RC)		 Add Standards for SI & MKS unit
	rthotropic	DB	ASTM(RC)		
Steel			U.S.C(US)(RC)		↑
Modulus of Elasticity :	0.0000e+00	kN/m²	NMX2023(RC) NMX2023(MKS)(RC)		
Poisson's Ratio :	0		NMA NTC-2017(RC) CSA(RC)		
Thermal Coefficient :	0.0000e+00	1/[F]	BS(RC)		
Weight Density :	0	kN/m³	EN04(RC) EN(RC)		
Use Mass Density:	0	kN/m³/g	NTC08(RC) NTC12(RC)		
Use Mass Density:		0 - 1	NTC18/PC)		+
Type of Material		Concrete Standard	NMX2023(RC) ~		 Add DB for Class 1A, Class 1B, and Class 2
Type of Material	Orthotropic	Standard			 Add DB for Class 1A, Class 1B, and Class 2 - "Class 2" Density : 22kN/m³
Type of Material		Standard (NMX2023(RC) ~ Code ~ 250-C1A(C)		
Type of Material Isotropic		Standard (DB	NMX2023(R¢) Code 1 250-C1A(C) 250-C1A(C) 250-C1A(C)		- "Class 2" Density : 22kN/m ³
Type of Material Isotropic	Drthotropic	Standard (DB	NMX2023(RC) ~ Code ~ 250-C1A(C) 250-C1A(B)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus
Type of Material Type of Material Type of Material Isotropic	Orthotropic 0.0000e+00	Standard DB kN/m ²	NMX2023(R¢) Code 250-C1A(C) 250-C1A(B) 300-C1A(C) 300-C1A(B) 300-C1A(B) 300-C1A(B) Code C		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus
Type of Material Type of Material Tsotropic Steel Modulus of Elasticity : Poisson's Ratio :	Drthotropic 0.0000e+00 0.0000e+00	Standard DB kN/m ²	NMX2023(RC) Code 250-C1A(C) 250-C1A(B) 300-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 400-C1B(C)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus
Type of Material Type of Material Tsotropic Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient :	0rthotropic 0.0000e+00 0.0000e+00 0	Standard DB ktV/m ² 1/[F]	NMX2023(R¢) Code 250-C1A(C) 250-C1A(B) 300-C1A(C) 300-C1A(B) 300-C1A(C) 350-C1A(B) 400-C1B(C) 400-C1B(C) 450-C1B(C) 450-C1B(C) 450-C1B(C) 450-C1B(B)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus
Type of Material Isotropic Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient : Weight Density : Use Mass Density:	0rthotropic 0.0000e+00 0.0000e+00 0	Standard DB kN/m ² 1/[F] kN/m ³	NMX2023(RC) Code 250-C1A(C) 250-C1A(C) 250-C1A(C) 300-C1A(B) 300-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 400-C1B(B) 400-C1B(C) 450-C1B(C)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus formulas according to class and aggregate type
Type of Material Isotropic Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient : Weight Density :	Drthotropic 0.0000e+00 0.0000e+00 0 0 0	Standard DB kN/m ² 1/[F] kN/m ³ kN/m ³ /g	NMX2023(RC) Code 250-C1A(C) 250-C1A(C) 250-C1A(B) 300-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 450-C1B(C) 450-C1B(C) 450-C1B(B) 550-C1B(C)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus formulas according to class and aggregate type * DB Name
Type of Material Isotropic Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient : Weight Density : Use Mass Density: Concrete	0rthotropic 0.0000e+00 0.0000e+00 0	Standard DB kN/m ² 1/[F] kN/m ³ kN/m ³ /g	NMX2023(R¢) Code 250-C1A(C) 250-C1A(B) 300-C1A(B) 300-C1A(C) 300-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 450-C1B(C) 450-C1B(C) 550-C1B(C) 550-C1B(B) 550-C1B(C)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus formulas according to class and aggregate type * DB Name Aggregate type
Type of Material Type of Material Type of Material Type of Material Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient : Weight Density : Use Mass Density: Concrete Modulus of Elasticity :	Drthotropic 0.0000e+00 0.0000e+00 0 0 0 0.0000e+00	Standard DB kN/m ² 1/[F] kN/m ³ /g kN/m ²	NMX2023(RC) Code 250-C1A(C) 250-C1A(C) 250-C1A(C) 250-C1A(C) 300-C1A(C) 300-C1A(C) 300-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1B(C) 500-C1B(B) 550-C1B(C) 550-C1B(C) 550-C1B(B) 600-C1B(B) 600-C1B(C)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus formulas according to class and aggregate type * DB Name
Type of Material Isotropic Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient : Weight Density : Use Mass Density: Use Mass Density: Concrete Modulus of Elasticity : Poisson's Ratio :	Drthotropic 0.0000e+00 0.0000e+00 0 0.0000e+00 0 0.0000e+00 0 0.0000e+00	Standard DB kN/m ² 1/[F] kN/m ³ kN/m ³ /g	NMX2023(RC) Code 250-C1A(C) 250-C1A(B) 300-C1A(C) 250-C1A(B) 300-C1A(B) 350-C1A(B) 350-C1A(B) 350-C1A(B) 450-C1B(B) 550-C1B(B) 550-C1B(C) 550-C1B(C) 550-C1B(C) 550-C1B(C) 550-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 650-C1B(C) 550-C1B(C)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus formulas according to class and aggregate type * DB Name Aggregate type
Type of Material Isotropic Steel Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient : Weight Density : Use Mass Density : Ouse Mass Density : Poisson's Ratio : Thermal Coefficient :	Drthotropic 0.0000e+00 0.0000e+00 0 0.0000e+00 0 0.0000e+00 0 0.0000e+00 0 0	Standard DB kN/m ² 1/[F] kN/m ³ /g kN/m ² 1/[F]	NMX2023(RC) Code 250-C1A(C) 250-C1A(B) 300-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(B) 350-C1A(C) 350-C1A(C) 350-C1A(C) 350-C1A(C) 550-C1B(C) 450-C1B(C) 450-C1B(C) 550-C1B(C) 550-C1B(C) 550-C1B(C) 600-C1B(B) 650-C1B(C) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 650-C1B(B) 550-C1B(C) 550-C1B(B)		 "Class 2" Density : 22kN/m³ Change in tensile strength and elastic modulus formulas according to class and aggregate type * DB Name Aggregate type

Grado 56

690 (7 030)

550 (5 600)

675 (6 880)

1.25

12

12

10

Grado 42

550 (5 600)

412 (4 200)

540 (5 500)

1.25

14

12

10

2. Added the rebar size & material DB of <u>NMX 2023</u> (Mexican design code)

DB	Ec modulus of elasticity	W weight density	Diameter	Area	Weight
UNIT	stress = F/L^2	density = F/L^3	cm	cm2	kgf/cm
#2	2.00E+06	0.00792	0.79	0.49	0.004
#3	2.00E+06	0.00788	0.953	0.71	0.006
#4	2.00E+06	0.00783	1.27	1.27	0.010
#5	2.00E+06	0.00784	1.588	1.98	0.016
#6	2.00E+06	0.00784	1.905	2.85	0.022
#7	2.00E+06	0.00784	2.223	3.88	0.030
#8	2.00E+06	0.00784	2.54	5.07	0.040
#9	2.00E+06	0.00784	2.865	6.42	0.050
#10	2.00E+06	0.00784	3.18	7.94	0.062
#11	2.00E+06	0.00784	3.49	9.57	0.075
#12	2.00E+06	0.00784	3.81	11.4	0.089
#14	2.00E+06	0.00783	4.45	15.52	0.121
#16	2.00E+06	0.00784	5.08	20.26	0.159
#18	2.00E+06	0.00783	5.72	25.65	0.201

 \times

Tabla 2.4.2.1.2.b - Requisitos de tensión para refuerzo NMX-B-457-CANACERO-2019

Requisitos

Relación mínima entre la resistencia a la tensión real y el

Alargamiento a la fractura en 200 mm, mínimo, %

Resistencia mínima a la tensión, MPa (kg/cm²)

Esfuerzo de fluencia, mínimo, MPa (kg/cm²)

Esfuerzo de fluencia, máximo, MPa (kg/cm²)

esfuerzo de fluencia real

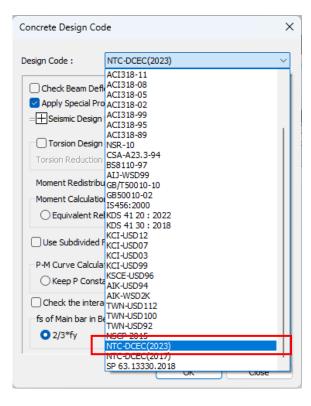
Designación 3, 4, 5, 6

Designación 14, 16, 18

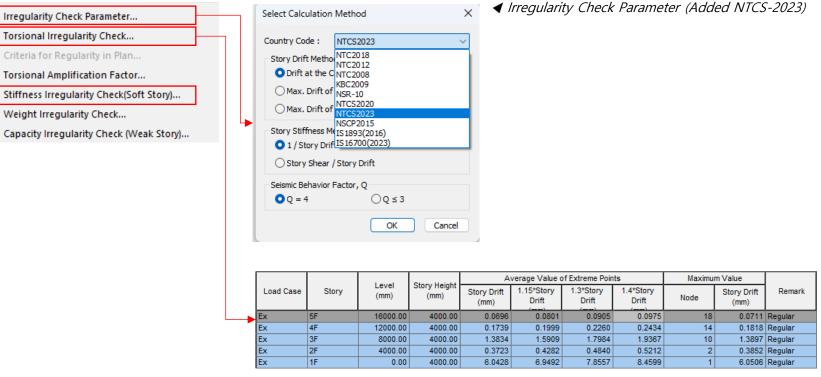
Designación 7, 8, 9, 10, 11, 12

Environment General View Data Tolerances Property Load Results Design/Load Code Notice & Help Graphics Output Formats Formats - Dim. & Others Formats - Forces Formats - Loads	Common Design Code L Steel Design Code: Eurocode3:05 V National Annex: Recommended V Cold Formed Steel Design Code: Eurocode3-1-3:06 V National Annex: Recommended V	oad Code Concrete Design Code: Eurocode2:04 National Annex: Italv Rebar Material Code IMX2023(MKS)(f \v Material DB Grade 42 Grade 42 Grade 56	SRC Design Code: SSRC79 V Rebar Material Code ASTM(RC) V Material DB Grade 60 V
--	--	--	---

▲ Rebar Material DB as per NMX 2023


Rebar Information	
-------------------	--

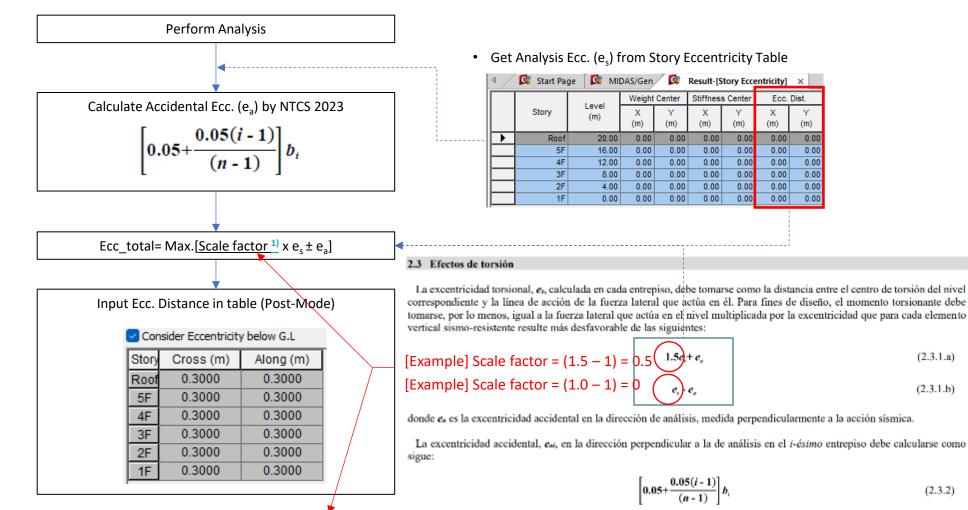
Rebar Cod	e NMX-	-2013(MKS)			
Снк	Name	Dia (m)	Area (m²)	Dia(Out) (m)	Weight (kN/m)
	#2	0.0079	0.0000	0.0079	0.0038
	#3	0.0095	0.0001	0.0095	0.0055
	#4	0.0127	0.0001	0.0127	0.0097
	#5	0.0159	0.0002	0.0159	0.0152
	#6	0.0191	0.0003	0.0191	0.0219
	#7	0.0222	0.0004	0.0222	0.0298
	#8	0.0254	0.0005	0.0254	0.0390
	#9	0.0287	0.0006	0.0287	0.0494
	#10	0.0318	0.0008	0.0318	0.0610
	#11	0.0349	0.0010	0.0349	0.0736
	#12	0.0381	0.0011	0.0381	0.0877
	#14	0.0445	0.0016	0.0445	0.1191
	#16	0.0508	0.0020	0.0508	0.1558
	#18	0.0572	0.0026	0.0572	0.1969
				ОК	Close


◀ Rebar Size DB as per NMX 2023

3. Added Design Code for NMX 2023 (Mexican design code)

Design Code Setting for NTC-DCEC 2023

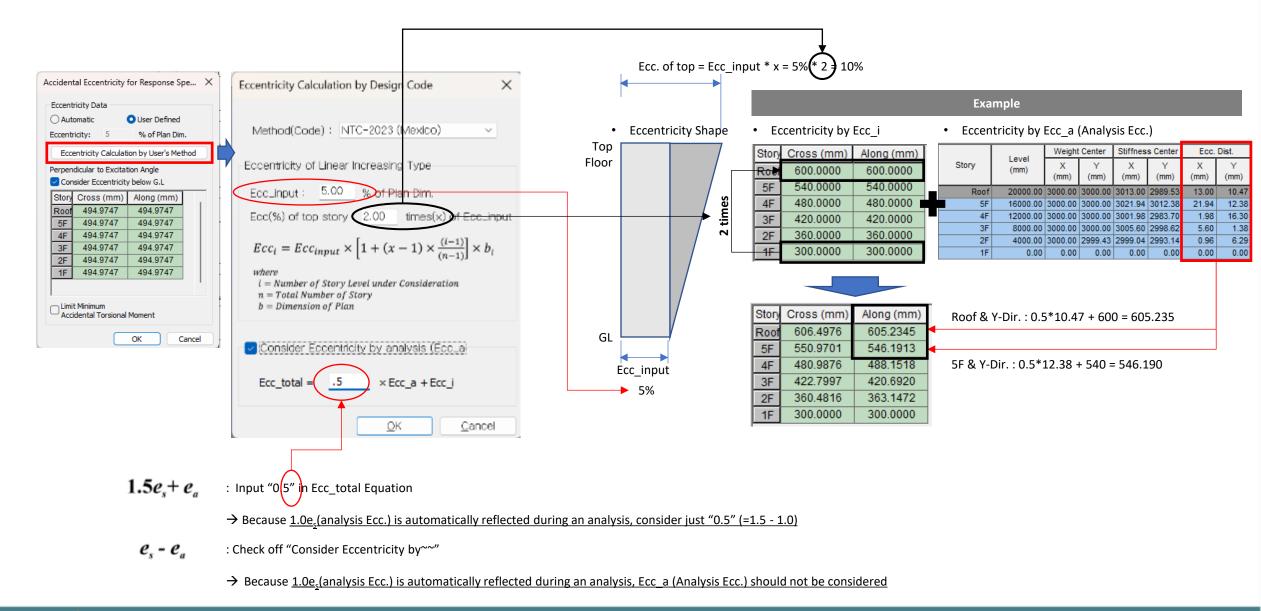
• Irregularity Check for NTC-DCEC 2023

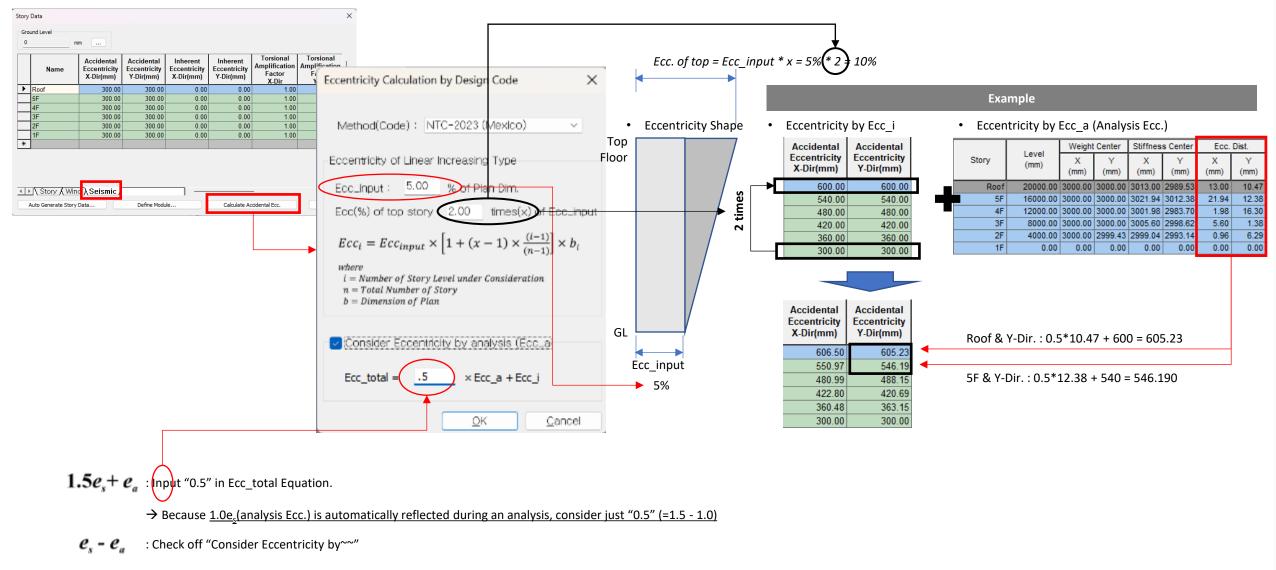

▲ Torsional Irregular Check Table as per NTCS-2023

		Laural	Story Height	Story Drift	Story Shear	Story		Upper Stor	y Stiffness			Average(Ki+1, Ki-1)	
Load Case	Story	Level (mm)	(mm)	(mm)	Force (kN)	Stiffness	1.3K (Upper)	0.85K (Upper)	0.5K (Upper)	0.4K (Upper)	Remark	0.5K (Average)	0.4K (Average)	Remark
Ex	5F	16000.00	4000.00	0.0696	3.61	57436.14	-	-	-	-		-	-	
 Ex	4F	12000.00	4000.00	0.1739	7.40	23005.77	74666.98	48820.72	28718.07	22974.45	Irregular	15081.90	12065.52	Regular
Ex	3F	8000.00	4000.00	1.3834	10.13	2891.46	29907.50	19554.90	11502.89	9202.31	Irregular	8437.35	6749.88	Strongly Irreg
Ex	2F	4000.00	4000.00	0.3723	11.95	10743.61	3758.90	2457.74	1445.73	1156.58	Irregular	888.35	710.68	Regular
Ex	1F	0.00	4000.00	6.0428	12.86	661.94	13966.69	9132.07	5371.80	4297.44	Irregular	-	-	

▲ Stiffness Irregular Check Table as per NTCS-2023

4. Added Eccentricity as per NTCS 2023


- The analysis eccentricity is additionally reflected in the accidental eccentricity.
- The accidental eccentricity ratio can be reflected to increase linearly.


¹⁾ $e_{s}(analysis Ecc.)$ is automatically reflected during an analysis, so it is used only when applying a factor exceeding 1.0.

donde b_l es la dimensión del *i-ésimo* piso en la dirección perpendicular a la dirección de análisis; y *n*, el número de pisos del sistema estructural. Cuando las fuerzas sísmicas se aplican de manera concurrente en 2 direcciones ortogonales, la excentricidad accidental no necesita ser considerada de manera simultánea en ambas direcciones, sino que debe ser aplicada en la dirección que produce el mayor efecto.

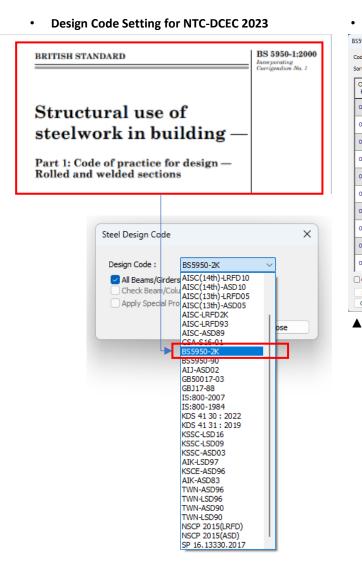
4. Added Eccentricity as per NTCS 2023 : Eccentricity in Response Spectrum

4. Added Eccentricity as per NTCS 2023 : Eccentricity for Static Seismic

→ Because <u>1.0e_s(analysis Ecc.) is automatically reflected during an analysis, Ecc_a (Analysis Ecc.) should not be considered</u>

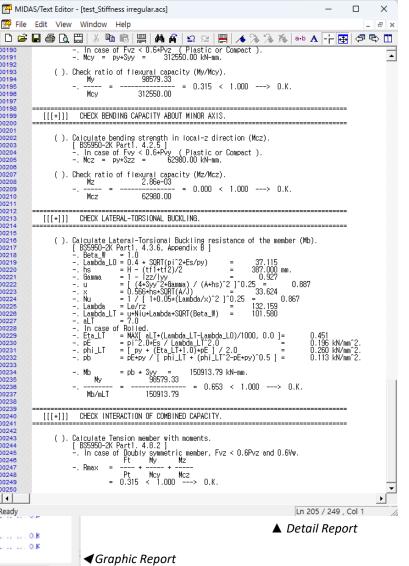
Items	Detail	
Steel Material	 SP 16_2017 (t.B3): C235 / C245 / C255 / C345K / C355 / C355-1; / C355-K / C355Π / C390; / C390-1 / C440 / C550 / C590 / C69 SP 16_2017 (t.B4): C2556 / C2556-1 / C3456 / C3456-1 / C3556 / C3556-1 / C3906 / C4406 SP 16_2017 (t.B5): C245 / C255 / C345 / C345K / C355 / C355-1 / C390 / C 	Itesticity Data Steel Steel Type of Dasign Steel Standard Image: Steel Standard SF 16.20 17t.83(5) Image: Steel Standard SF 16.20 17t.83(5) Image: Steel Standard ST 17t.83(5) Image: Steel Steel
RC material	 SP 63-2018 → Heavyweight, Fine grained-gr A type, Fine grained-gr B type (표기 : B + Number + Type) → Lightweight D800, D1000, D1200, D1400, D1600, D1800, D2000 (표기 : LB + Number) → Cellular D500, D600, D700, D800, D900, D1000, D1100, D1200 (표기 : CB + Number) 	Steel C380 Modulus of Basticity : 0.0000e+00 Roison's Radio : 0 Basticity Data Type of Design Concrete Image: Concrete Ima
Steel Section DB	 I-Shape(GOST 8239 – 89, GOST 26020 – 83, STO ASCHM 20 – 93, GOST 19425-74, GOST P 57837-2017) Channel Bar (GOST 8240 - 97) Cold Formed Channel (GOST 8278 - 83) T-Shape (GOST 8239 – 72, TU 14 - 2 - 24 – 72) Angle (GOST 8509 – 93, GOST 8510 - 72) Box (GOST 30245 – 2003, GOST 8639 – 82, GOST P 54157 – 2010) Pipe (GOST 8732 – 78, GOST 10704-91, GOST 54929-2012) Solid Circle / Square (GOST 2590-2006, GOST 2591-2006) Z-Shape (TU 100-180) 	Type of Material Standard \$F53.2018(RC) Type of Material Definitions Definitions Standard Code Code Poisson's Ratio : 0 DE Name User DE Code Section 1D Sect. Name I 10 I 12 Get Data in on Sin I 10 I 22 I 22 Exct. Name I 22 I 22 I 22 Exct. Name I 20 I 20 I 20
Rebar Material / DB	 Material : SP 63-2018 A240 / A400 / A500 / A600 / A800 / A1000 / B500 / BP500 / BP1200 / BP1300 / Bp1400 / BP1500 / Bp1600 / K1400 / K1450 / K1550 / K1650 / K1750 / K1850 / K1900 Size : GOST #4 / #5 / #6 / #7 / #8 / #9 / #10 / #11 / #12 / #13 / #14 / #15 / #16 / #17 / #18 / #19 / #20 / #22 / #25 / #28 / #32 / #36 / #40 	Professions X Minimum (informal) Cannot finder finde (call case) Cannot finder finder (call case) Minimum (call case) Cannot finder finder (call case) Cannot finder finder (call case) Minimum (call case) Cannot finder finder (call case) Cannot finder (call case) Minimum (call case) Cannot finder (call case) Cannot finder (call case) Cannot finder (call case) Minimum (call case) Cannot finder (call case) Cannot finder (call case) Call case) Call case) Minimum (call case) Call case) Call case) Call case) Call case) Minimum (call case) Call case) Call case) Call case) Call case) Minimum (call case) Call case) Call case) Call case) Call case) Minimum (case) Call case) Call case) Call case) Call case) Minimum (case) Call case) Call case) Call case) Call case) Minimum (case) Call case) Call case) Call case) Call case) Minimum (case) Call case) Call case) Call case) Call

GEN 2025 (v1.1)


Items	Detail	
Steel Design	 Design Code : SP 16.13330.2017 Added Design parameter features Type of stress state Cross Rib Length Local stress Pure bending zone Lateral buckling Supported Table design result, Graphic result, Detail result 	Steel Design Code X Design Code : SP 16.13330.2017 Image: All Beams/Girders are Laterally Braced Check Beam/Column Deflection Image: Column Deflection Apply Special Provisions for Seismic Design Image: OK Close
RC Design	 Design Code : SP 63.13330.2018 Supported Member Design type : Beam, Column, Truss, Wall, Meshed Slab, Meshed Wall Supported Table design result, Graphic result, Detail result 	Concrete Design Code X Design Code : SP 63.13330.2018 General Parameter Consider Phi_n for longitudinal forces © The system is statically determinable Take creep into account © Calculation for the second group of limit states Seismic Design Parameter © Cosider SP 14.13330.2018 © Include seismics in the calculation of crack resistance Select Earthquake-Resistant Grade © Intensity degree 7.0 © Intensity degree 9.0 P-M Curve Calculation Method © Keep P Constant © Keep M/P Constant

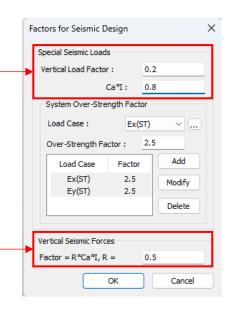
GEN 2025 (v1.1)

Items	D	etail	
Wind Load	 Code : SP 20.113330.2016 (User Type) → Input by user (Not auto-generation) Added "Pulsation Wind Load" → It is available after an eigenvalue analysis. 	Add/Modify Wind Load Specification X Load Case Name : Wind Wind Load Code : SP 20.113330.2016(User') Description : Import H Root 20000 0 0 20000 SF 16000 0 0 40000 SP 16000 0 0 40000 SF 16000 0 0 40000 Wind Eccentricity None Very Province None Y-Dir. (Wy): Positive Negative None	Create Wind Pulsation X Type of construction Tovers, masts Type of Terrain A Logarithmic Decrement of Oscillations 0.3 Normative value of wind pressure - wo (kPa) 0.23 Dimension X-Dir Y-Dir According to Plan 11 mm 11 Along Wind Front 12 mm 10 Modes & Direction Factor X-Dir Y-Dir Direction Factor X-Dir Y-Dir Direction Factor 1 1 Øbect Mode Shapes 1 14.19 Øbect Mode Shapes 1 </td


Items	Detail	
Seismic Load	 User Type → Input by user (Not auto-generation) 	Add/Modify Seismic Load Specification X Load Case Name : Ex Seismic Load Code : User Type Import Description : Seismic Force X-Dir Y-Dir Roof 31.0474 2000 0 0 5F 40.7729 16000 0 0 3F 39.1149 12000 0 0 2F 39.1149 4000 0 0
RS Load	• Code : SP 14.13330.20018	Add/Modify/Show Response Spectrum Functions Generate Design Spectrum X Function Name spectral Data Type Design Spectrum : SP 14.1330.2018 Design Spectrum : SP 14.1330.2018 Import File Design Spectral Data (g) Scale Factor Import Sol Category Im

1. Added Steel Design as per BS 5950-2000

	Des	oigii	ne	Suit													
595	0-2K Cod	le Check	ing Re	esult Dialog											×		2
ode :	BS5950-	2К		Unit :	kN , mm	Primar	y Sorting	Option									
orted	0	Member			odate	() SE		MEMB									2
	- 0	Property			pdate	-									_		
CH K	MEMB	SECT	SEL	Section	LCB	Len	1/mLT	m_y	Fa	Му	My	Mz	Fvy	Fvz			0019 0019
ĸ	COM 28	SHR 1		Material HEM200	Fy	Le 4000.00		m_z 0.850	Pa -314.12	Mb/mL	Mcy -44776	Mcz -64721	Pvy -26.516	Pvz -13.239			0019
ок	0.996	0.028			3500 1	4000.00	1.000	0.850	1981.13	254865	266960	126903					0019
ок	29	2	Г	H 400x200x8/13		8000.00	1.000	1.000	0.00000	175252	175252	-0.0026	0.00000				0019
UK	0.561	0.194			3500	8000.00	1.000	1.000	1976.82	111353	312550	62980.0					0019
ок	30	2	Г	H 400x200x8/13	1	6000.00 6000.00	1.000	1.000	0.00000	98579.3	98579.3	0.00286					0019
	0.315	0.146		SS400 0.2 H 400x200x8/11	3500	6000.00		1.000	1976.82	150914	312550	62980.0	659.880	451.200			0015
ок	0.561	0.194		SS400 0.2		e Window	r										0020
ок	32	2	Г	H 400x200x8/1	Memb Ne	1.20		🖗 Prin		Prist A	. AU	Close		Seve			0020
OIL	0.315	0.146	1	SS400 0.2	Invento na	1.30	× I	a y -nn		r min v	• <u>~</u>	Close		DEVE			0020
ок	33 0.541	0.008		HEM200 SS400 0.2	1. Desig	an Infor	malio	n								3	0020
	34	0.000	_	HEM200										+		1	0020
ок	0.528	0.008		SS400 0.2	Design			60-2K									0020
ок	35	1		HEM200	Unit Sy		KN, n 30	1									0020
-	0.543	0.008	· · ·	SS400 0.2	Membe									8	÷—	+-+	002 ⁻ 002
ок	36 0.530	0.008		HEM200 SS400 0.2	Materia			0 (No:1)		05.050					× *	ł'	0021
	37	2		H 400x200x8/1					0, Ea = 2						$\perp =$	<u> </u>	0021
ок	0.561	0.194		SS400 0.2	Sector	Name			43 (No 2						- I.	4	002
	nnect Mod	lel View							00x200x	5/13).						390	002
				View Result Ra	Membr	er Length	: 6000	1.00							'	'	002 ⁻ 002
	ect All	Unsele		Re-calculation													002
Gra	phic	Deta	il	Summary	2. Mem	ber Fo	rces							Death Tea F ∎i	$^{+40}_{+1-20}$		002:
	Tabl			14	Axial F	once		$\log z$	0.0000	(DB)	- I, F	06:1/Z)	tet h 🖷	dt 20		002
	lubi	еке	su		Bendir	g Morreni	a	$N_{\mathcal{T}} = 2$	871.1	, fiz	- 0.002	7 8 1		<u>सं</u> तन्त	81	12.00 k	002:
					End M	oments		Nyi - I	C. DCDOC	fizi	- 0.000	100 (fr	or Le)	Den: Tex	808 23700		002:
								$N_{i}(1) = 1$	0.0000	1 MVI	- II. III	III - Ch	or Ly).	Ytar Zar	100	0.000 Z 90000 Z	002
								Hzi =	0.00000	, Nzi	- 0.000	100 (f)	or Lz)	19	166	8.000 r	002
					Shear	Forces		Eyy =	0.0000	0 (LC8	÷.,	POS:1)					002
								Faz =	-65,72	0 (1.08	÷ 1,	P0S:()					002 002
																	002
					3. Desig	yn Para	mele	rs									002
					Effective	e Length	for LTP.			Le = i	5000,00	1					002 002
						e Lengh				Ку –	1.00,		- 1.0	0			002
						lent Unito		ent Facto	n (Slen								0023 0023
										• V •		1.2.4	1.0	0. 1/nL	.T =	1.00	002
					4. Chec	king R	esult					_			-		0024
						imeas Rat											0024
					Stende	L/r		192.9	z ano	c ruce	. р.						0024
					bullet a	L/F lesistance		102.2	< 300.	C (D08	10.						0024
					April 1				00/1075	22.							002
						Ft/Ft		0.1	00/18/6	. 52 -	0.000 ×	1,000					002
					Dendir	g Resista			-	-							002
						Hay/Ho				550 = 0						••••••	002
						Hz/Ht				c.a = o	.000 <	1.000					4
					Combi	ned Capa											Rea
								: + tw/	tor + N	z/Noz =	0.315	< 1,000		·· ·· ·			nea
					Shear	Resistano											
						Exst/P			00 < 1.0							••••••	
						Evz/P	VZ	- 3.1	46 < 10								


Design Result

1. Added Auto-Generation of Special and Vertical Seismic Load per NSCP 2015

Load Combination Setting for NTC-DCEC 2023

utomatic Generatic	n of Load C		×			
Option • Add O Reg	place					
Code Selection						
O Steel	Concrete					
O Cold Formed Ste	el	OFooting				
Design Code :	NSCP 2015((LRFD) V				
Scale Up of Resp	onse Spectru	m Load Cases				
Scale Up Factor :	1	Rx ~				
Factor Load	Case	Add				
		Modify				
		Delete				
O 100 : 30 Rule	ses for Ortho	gonal Effect				
SRSS(Square-Root-of-Sum-of-Squares) Generate Additional Load Combinations for Special Seismic Load for Vertical Seismic Forces Factors for Seismic Design						
Consider Redund	ancy Factor r 1	:				
Consider Live Loa	d Reduction F	Factor f1:				
Factor f	or Live load R	eduction				
	OK	Cancel				

	No	Name	Active	Туре	Description	
•	1	sLCB42	Special	Add	1.4(D)	
	2	sLCB43	Special	Add	1.2(D) + 1.6L	
	3	sLCB44	Special	Add	1.2D + 1.0(2.5)Ex + 1.0(1.0L) + (0.2)(0.8)D	
	4	sLCB45	Special	Add	1.2D + 1.0(2.5)Ey + 1.0(1.0L) + (0.2)(0.8)D	
	5	sLCB46	Special	Add	1.2D - 1.0(2.5)Ex + 1.0(1.0L) + (0.2)(0.8)D	
	6	sLCB47	Special	Add	1.2D - 1.0(2.5)Ey + 1.0(1.0L) + (0.2)(0.8)D	
	7	sLCB56	Special	Add	0.9D + 1.0(2.5)Ex - (0.2)(0.8)D	
	8	sLCB57	Special	Add	0.9D + 1.0(2.5)Ey - (0.2)(0.8)D	
	9	sLCB58	Special	Add	0.9D - 1.0(2.5)Ex (0.2)(0.8)D	
	10	sLCB59	Special	Add	0.9D - 1.0(2.5)Ey (0.2)(0.8)D	
	11	sLCB68	Vertical	Add	1.4(D) Vertical Load Factor * (C _a l) * De	ead Load
	12	sLCB69	Vertical	Add	1.2(D) + 1.6L	
	13	sLCB70	Vertical	Add	1.2D + 1.0Ex + 1.0(1.0L)	
	14	sLCB71	Vertical	Add	1.2D + 1.0Ey + 1.0(1.0L)	
	15	sLCB72	Vertical	Add	1.2D - 1.0Ex + 1.0(1.0L)	
	16	sLCB73	Vertical	Add	1.2D - 1.0Ey + 1.0(1.0L)	
	17	sLCB82	Vertical	Add	0.9D + 1.0Ex	
	18	sLCB83	Vertical	Add	0.9D + 1.0Ey	
		sLCB84	Vertical	Add	0.9D - 1.0Ex	
	20	sLCB85	Vertical	Add	<u>0.9D - 1</u> .0Ey	
	21	sLCB94	Vertical	Add	-(0.4)D + 1.0Ex	
		sLCB95	Vertical	Add	-(0.4)D + 1.0Ey	
	23	sLCB96	Vertical	Add	-(0.4)D • 1.0Ex	
	24	sLCB97	Vertical	Add	-(0.4)D · 1.0Ey	

Load Combination Table

Vertical Seismic Force → R * C_aI * Dead Load

NSCP 2015 (Add New Features)

2. Added Irregularity Check per NSCP 2015

2. Added megularity check per NSCF 2015		Load Case	Story	(mm)	(mm)	Story Drift (mm)	1.2*Story Drift (mm)	Node	Story Drift (mm)	Remark
		Ex	5F	16000.00				336 18	0.0711	-
		Ex	4F	12000.00	4000.00	0.1739	0.2	086 14	0.1818	Regular
Torsional Irregularity Check		Ex	3F	8000.00	4000.00	1.3834	1.6	501 10	1.3897	Regular
Torsional megularity check		Ex	2F	4000.00	4000.00	0.3723	0.4	468 2	0.3852	Regular
		Ex	1F	0.00	4000.00	6.0428	7.2	514 1	6.0506	Regular
Calculation of Torsional Amplification Factory										
Stiffness Irregularity Check (Soft Story)				Level	Stopy Height	Average Displacement	Maximum Di	splacement	Torsional	
Stiffness Irregularity Check (Soft Story)		Load Case	Story	Level (mm)	Story Height (mm)	Average Displacement of Extreme Points (mm)	<u> </u>	splacement Displacement (mm)	Torsional Amplification Factor (Ax)	Note
Stiffness Irregularity Check (Soft Story) Weight Irregularity Check		To obtain rig	ht results, th	(mm) ne torsional amp	(mm)	of Extreme Points (mm) ors in 'Story/Seismic Tab'	Node dialogue box must	Displacement (mm) De all set to '1'.	Amplification Factor (Ax)	
		To obtain rig Ex		(mm)	(mm)	of Extreme Points (mm) ors in 'Story/Seismic Tab' 8.0420	Node dialogue box must 22	Displacement (mm)	Amplification Factor (Ax) 0.70	И

Х

 \sim

Cancel

OK

Level Story Height

• Capacity Irregularity Check (Weak Story)

Story Drift	Select Calculation Method
Story Drift (Time History Analysis)	Country Code : NSCP2015
Story Displacement Story Shear (Response Spectrum Analysis) Story Shear (Time History Analysis) Story Mode Shape Story Eccentricity	Story Drift Metho Drift at the C Max. Drift of Max. Drift
Story Shear Force Ratio Overturning Moment	Story Stiffness M (51893(2016) 1 / Story Drift IS16700(2023) Story Shear / Story Drift
Story Axial Force Sum Stability Coefficient	
Irregularity Check Parameter	
Torsional Irregularity Check	
Criteria for Regularity in Plan	
Total and Anna III and an Eastern	

Torsional Amplification Factor...

Stiffness Irregularity Check(Soft Story)...

Weight Irregularity Check...

Capacity Irregularity Check (Weak Story)...

Ш						(11111)		(mm)	(Ax)		
	To obtain right results, the torsional amplification factors in 'Story/Seismic Tab' dialogue box must be all set to '1'.										
Ľ		Ex	Roof	20000.00	0.00	8.0420	22	8.0784	0.701		
L		Ex	5F	16000.00	4000.00	7.9724	18	8.0073	0.701		
L		Ex	4F	12000.00	4000.00	7.7985	14	7.8255	0.699		
L		Ex	3F	8000.00	4000.00	6.4151	10	6.4358	0.699		
L		Ex	2F	4000.00	4000.00	6.0428	2	6.0506	0.696		
L		Ex	1F	0.00	4000.00	0.0000	0	0.0000	0.000	No Diaphragm	

Average Value of Extreme Points

Maximum Value

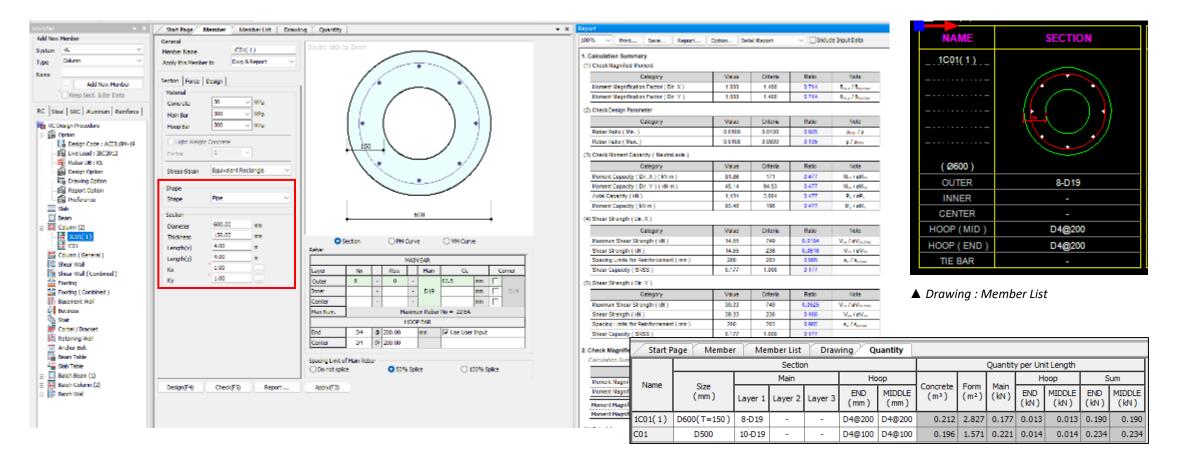
Oheren Duith

		L av al	Story Height	Story Drift	Story Shear	Chara	Upper Story Stiffness		Story	Story Drift Angle	
Load Case	Story	Level (mm)	(mm)	(mm)	Force (kN)	Story Stiffness	0.7Ku1	0.8Ku123	Stiffness Ratio	Ratio	Remark
Ex	5F	16000.00	4000.00	0.0696	3.61	57436.14	0.00	0.00	0.000	0.000	Regular
Ex	4F	12000.00	4000.00	0.1739	7.40	23005.77	40205.30	0.00	0.572	2.497	Irregular
Ex	3F	8000.00	4000.00	1.3834	10.13	2891.46	16104.04	0.00	0.180	7.956	Irregular
Ex	2F	4000.00	4000.00	0.3723	11.95	10743.61	2024.02	22222.23	0.483	0.269	Regular
Ex	1F	0.00	4000.00	6.0428	12.86	661.94	7520.53	9770.89	0.068	16.230	Irregular

					Ohen Weicht		tory Weight	Charles Weight	Charles Delft Angela	
	Load Case	Story	Level (mm)	Story Height (mm)	Story Weight (kN)	1.5M(Upper) (kN)	1.5M(Lower) (kN)	Ratio	Story Drift Angle Ratio	Remark
\mathbf{F}	Ex	Roof	20000.00	0.00	31.047	0.000	61.159	0.508	0.000	Regular
	Ex	5F	16000.00	4000.00	40.773	46.571	58.672	0.875	0.000	Regular
	Ex	4F	12000.00	4000.00	39.115	61.159	58.672	0.667	2.497	Regular
	Ex	3F	8000.00	4000.00	39.115	58.672	58.672	0.667	7.956	Regular
	Ex	2F	4000.00	4000.00	39.115	58.672	0.000	0.667	0.269	Regular
	Ex	1F	0.00	4000.00	9.404	58.672	0.000	0.160	16.230	Regular

	Story	Level (mm)	Story Height (mm)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark2
	Angle = 0 [D)eg]											
	Input angle a to change th	and press the ' he angle.	Apply' button	0.00	Apply								
►	5F	16000.00	4000.00	0.00	2440.7805	0.0000	0.0000	Regular	90.00	5416.9485	0.0000	0.0000	Regular
	4F	12000.00	4000.00	0.00	2440.7805	2440.7805	1.0000	Regular	90.00	4840.9998	5416.9485	0.8937	Regular
	3F	8000.00	4000.00	0.00	1861.2000	2440.7805	0.7625	Regular	90.00	5416.9485	4840.9998	1.1190	Regular
	2F	4000.00	4000.00	0.00	2440.7805	1861.2000	1.3114	Regular	90.00	4840.9998	5416.9485	0.8937	Regular
	1F	0.00	4000.00	0.00	1861.2000	2440.7805	0.7625	Regular	90.00	5416.9485	4840.9998	1.1190	Regular

Go	to	de	

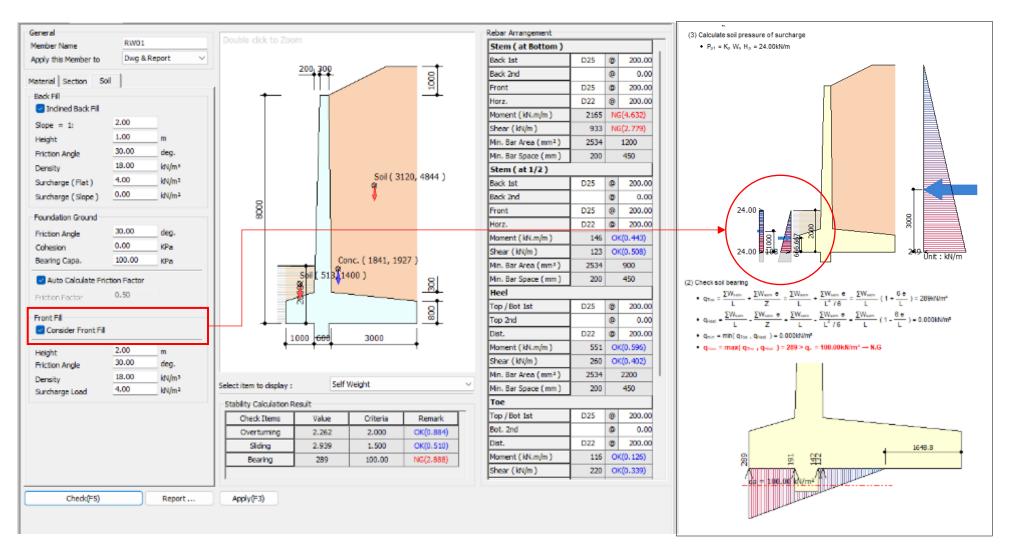

Items	Detail	
Cold Formed Section	 Supported the combined cold-formed section. <u>Combined No. : 1^{~4}</u> <u>Combined Type (IS, IW, ES, EW)</u> I : Web-to-web shape (I-shape) E : Flange-to-Flange shape (Box-shape) S : Bolt(Screw) connection W : Welded connection 	Section Data X DB/User Value Section Contened Tapered Composite Section ID Image: Contened Calif Formed Channel Image: Contened Image: Contened Name CC 120x50x20/2.3 Image: Contened Image: Contened Image: Contened Image: Contened Image: Contened Sect. Name CC 120x50x20/2.3 Image: Contened Image: Contened Image: Contened Image: Contened Sect. Name CC 120x50x20/2.3 Image: Contened Im
Lateral Load as per DTP (Thailand)	 Fixed the bug for static seismic load & response spectrum Fixed the bug for static wind load 	
Interface	Add "Master Design"	Only for Italy
IDEA statica Connection	• The member forces by each load combination can be exported to IDEA statica connection.	
Addition of Rebar DB	 Thailand : TIS(SI), TIS(MKS) Mexico : NMX-2013 (SI), NMX-2013 (MKS) Russia : GOST-SP, GOST-SNiP, SP 63-2018 Austria / New Zealand : AS / NZS South Africa : TMH7 	

DESIGN +

RC Column Design : Pipe Shape

1. Added RC pipe column design as per ACI

- Supported Design Code : ACI 318(M) -11, ACI 318(M) -14, ACI 318(M) -19, KDS 41 20 : 2022, KDS 41 20 : 2018, NSR-10
- Supported Features : Column Design, Patch Column Design, Drawing, Quantity


▲ Quantity

DESIGN+ 2025 (v1.1)

Retained Wall Design

1. Improved retained wall design as follows

- Application of load (Active Soil Pressure) by Front Fill
- Reinforcement of Detail Report. : Explain the design process and formulas in more detail

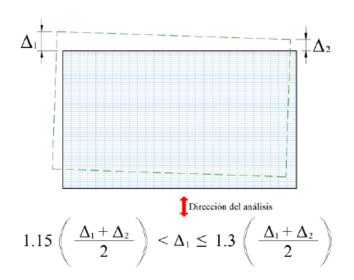
ETC

Items	Detail		
Addition of Rebar DB	 Thailand : TIS(SI), TIS(MKS) Mexico : NMX-2013 (SI), NMX-2013 (MKS) Russia : GOST-SP, GOST-SNiP, SP 63-2018 Australia : AS South Africa : TMH7 	Rebar Option Rebar Code Rebar Code Rebar Option for JIS CNS RC-1 RC-2 RCS Slab BS Beam Girder IS Column UNI Shear Wall GB CSA Basement Wall U.S. C(US) U.S. C(US) Buttress S/SIT(SN) Corbel Bracket (GOST(SNP) Corbel Bracket (GOST(SNP) Beam Table SA17 TIS(SI) TIS(SI) TIS(SI) TIS(SI) Default TMK-2013(SI)	Spacing List Moment Shear 100.00 150.00 200.00 250.00 300.00 350.00 400.00 450.00 450.00 Use user-defined space. Apply Close

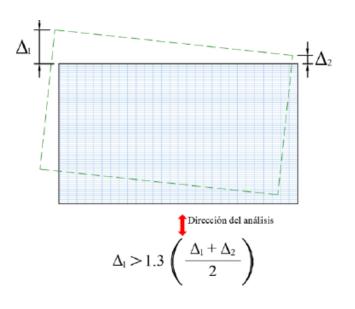
Thank you

Appendix 01

NTC & NMX 2023


Revised provisions (reflected to midas Gen)

Torsional Irregular Check (NTC 2023)


Irregular

5.2.1.1 It will be considered that a structure is irregular in torsion when in any story there is a point with a lateral displacement that exceeds in more than 15% the average lateral displacement of the extreme points of the story in the analysis direction.

Strongly Irregular

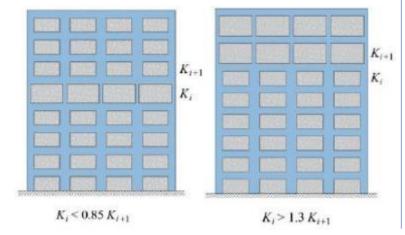
5.2.2.1 A structure is strongly irregular in torsion when in any story there is a point with a lateral displacement that exceeds in more than 30% the average lateral displacement of the extreme points of the story in the analysis direction.

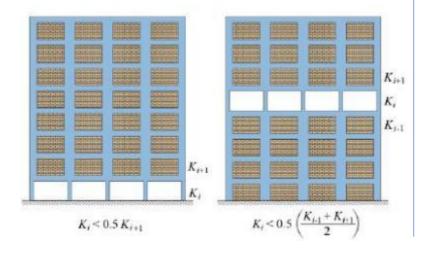
PBE

5.5.3 If in any story there is a point with a lateral displacement that exceeds in more than 40% the average lateral displacement of the extreme points of the story in the analysis direction, a nonlinear time history analysis must to be performed as a review of the structure regardless of his height in order to verify the allowable drift indicated in 4.3 and reduced by 50%.

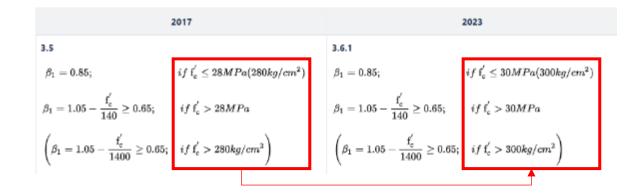
Stiffness Irregular Check (NTC 2023)

Irregular

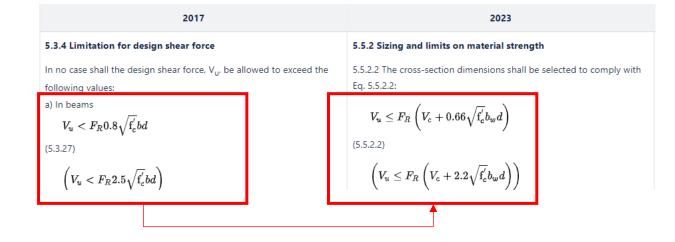

5.3.2.1 A structure will be considered as Irregular in elevation due to sudden changes in lateral stiffness in height when the lateral stiffness of a story is 15% less than the lateral stiffness of the story immediately above or 30% greater than the stiffness of the story immediately above.


Strongly Irregular

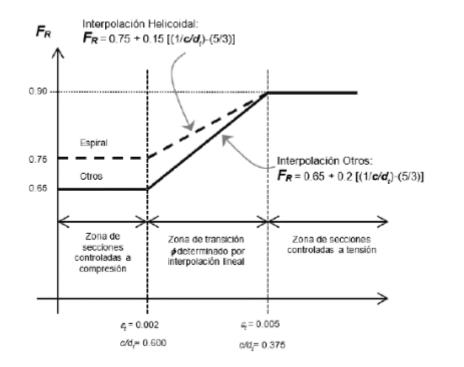
5.3.3.1 A structure will be considered as strongly irregular due to sudden reductions in lateral stiffness, that is when the lateral stiffness of a story is less than 50% of the lateral stiffness of the story immediately above or less than 50% of the lateral stiffness average of the stories immediately below and above a story.


PBE

5.6.3 If the lateral stiffness of any stroy is less than 40% of the lateral stiffness of the story immediately above it or less than 40% of the average lateral stiffness of the stories immediately below and above the story, a non-linear time history analysis must to be performed as a review of the structure regardless of his height in order to verify that at the story with abrupt reduction in lateral stiffness and all stories below the structure will have linear behavior under established ground accelerations according to 7.4.1.

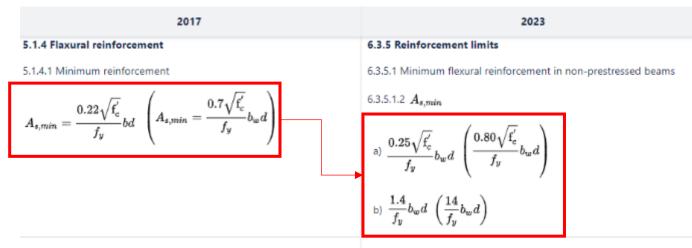


• Changed the reference f'_c value to apply to '61' formula. : 28MPa \rightarrow 30MPa


• Changed a limitation formula for design shear force.

• Changed a formula for a concrete shear resistance.

5.3.1 Concrete resistance to shear force 5.3.1 Concrete resistance to shear force in one-way 5.3.1 a Non-prestressed learning in beams with a span to total depth ratio, Lh, not less than 5, the shear force taken by the concrete VCB shall be calculated using the following criteria- if $p < 0.015$ $V_{cR} = F_R(0.2 + 20p) 0.3\sqrt{\xi}bd$ ($V_{cR} = F_R(0.2 + 20p)\sqrt{\xi}bd$) if $p \geq 0.015$ $V_{cR} = F_R(0.16\sqrt{\xi}bd)$ ($V_{cR} = F_R(0.5\sqrt{\xi}bd)$ ($S.3.2$) In any case, V_{cR} must comply with: $V_{cR} \leq F_R(0.47\sqrt{\zeta}bd)$ ($V_{cR} \leq F_R 1.5\sqrt{\xi}bd$) ($S.3.2$) In any case, V_{cR} must comply with: $V_{cR} \leq F_R(0.47\sqrt{\zeta}bd)$ ($V_{cR} \leq F_R 1.5\sqrt{\xi}bd$) ($S.3.2$) $V_{cR} = F_R(0.60\lambda(p)^{1/3}\sqrt{\xi} + \frac{P_{c}}{6A_{q}})b_{w}d$ ($S.5.3.1.1.b$ Imitations a) and b) shall be taken into account: $v_{cR} = F_R(0.60\lambda(p)^{1/3}\sqrt{\xi} + \frac{P_{c}}{6A_{q}})b_{w}d$ ($S.5.3.1.2$ In Eqs. 5.5.3.1.1.b Imitations a) and b) shall be taken into account: $v_{cR} = F_R(0.80\sqrt{\zeta}bd \leq V_{cR} \leq F_R 0.47\sqrt{\zeta}bd$ ($V_{cR} = F_R(0.60\lambda(p)^{1/3}\sqrt{\xi} + \frac{P_{c}}{6A_{q}})b_{w}d$ ($S.5.3.1.2$ In Eqs. 5.5.3.1.1.b Imitations a) and b) shall be taken into account: $v_{cR} = F_R(0.25\sqrt{\xi}bd \leq V_{cR} \leq F_R 0.47\sqrt{\xi}bd$ ($F_{cR} 0.25\sqrt{\xi}bd \leq V_{cR} \leq F_R 0.47\sqrt{\xi}bd$) ($V_{cR} = F_R(0.60\lambda(p)^{1/3}\sqrt{\xi} + \frac{P_{c}}{6A_{q}})b_{w}d$ ($S.5.3.1.2$ In Eqs. 5.5.3.1.1.b Imitations a) and b) shall be taken into account: $v_{cR} = F_R(0.25\sqrt{\xi}bd \leq V_{cR} \leq F_R 0.47\sqrt{\xi}bd$ ($F_{cR} 0.25\sqrt{\xi}bd \leq V_{cR} \leq F_R 0.47\sqrt{\xi}bd$	2017	2023
	5.3.3.1a Non-prestressed elements In beams with a span to total depth ratio, L/h, not less than 5, the shear force taken by the concrete. VcR, shall be calculated using the following criteria: if $p < 0.015$ $V_{cR} = F_R(0.2 + 20p)0.3\sqrt{f_c}bd$ $\left(V_{cR} = F_R(0.2 + 20p)\sqrt{f_c}bd\right)$ if $p \ge 0.015$ $V_{cR} = F_R 0.16\sqrt{f_c}bd$ $\left(V_{cR} = F_R 0.5\sqrt{f_c}bd\right)$ (5.3.2) In any case, V_{cR} must comply with:	5.5.3.1.1 In all concrete elements, except those included in table 6.3.5.4.1 and in 5.5.3.8, a minimum amount of transverse reinforcement shall be placed in the web, even if it is not required for strength, as prescribed in table 6.3.5.4.4. If this minimum amount is available, the shear force resisted by the concrete shall be calculated with either of the equations 5.5.3.1.1. a or 5.5.3.1.1.b taking into account the limitations established in 5.5.3.1.2. The force Pu shall be considered positive if it is compressive, negative if it is tensile, and zero in the case of beams. V _{cR} shall not be less than zero. The factor λ shall be taken from 2.3.3.2. $V_{cR} = F_R \left(0.17\lambda\sqrt{t_e'} + \frac{P_u}{6A_g} \right) b_w d$ (5.5.3.1.1.a) $\left(V_{cR} = F_R \left[0.66\lambda(p)^{1/3}\sqrt{t_e'} + \frac{P_u}{6A_g} \right] b_w d \right)$ (5.5.3.1.2. In Eqs. 5.5.3.1.1.a and 5.5.3.1.1.b limitations a) and b) shall be taken into account: $v_{cR} = F_R \left(0.86\lambda(p)^{1/3}\sqrt{t_e'} + \frac{P_u}{6A_g} \right) b_w d \right)$ ($F_R = F_R \left[0.66\lambda(p)^{1/3}\sqrt{t_e'} + \frac{P_u}{6A_g} \right] b_w d \right)$


• Changed a formula to calculate F_R' : Calculating Fr by ε_t' instead of c/d_t'

F_R Tipo de refuerzo transversal Deformación unitaria Clasificación neta de tensión ε_t Refuerzo helicoidal (zunchos) que cumple Otros con 14.7.4 Controladas por 0.75 b) $\varepsilon_t \leq \varepsilon_{ty}$ a) 0.65 compresión $0.75 + 0.15 \frac{\left(\varepsilon_t - \varepsilon_{ty}\right)}{\epsilon_t}$ $0.65 + 0.25 \frac{\left(\varepsilon_t - \varepsilon_{ty}\right)}{\epsilon_t}$ $\varepsilon_{ty} < \varepsilon_t < \varepsilon_{ty} + 0.003$ Transición c) d) (0.003) (0.003)Controlada por 0.90 0.90 f) $\varepsilon_t \ge \varepsilon_{ty} + 0.003$ e) tensión

Tabla 3.8.2.2 – Valores del factor de resistencia F_R para momento, fuerza axial, o momento con fuerza axial

• Beam design of low ductility structure

6.3.7.6 Transverse reinforcement

Tabla 6.3.7.6.2.2 - Separación máxima de ramas del refuerzo para cortante en vigas de ductilidad baja

		Separación máxima 8				
V _r requerido		Vigas no presforzadas			Vigas presforzadas	
		A lo largo del claro	A través del ancho		rgo del trv	A través del ancho
$\leq 0.33 \sqrt{t_c^2} b_w d$	El menor de:	d/2	d	3	<i>i</i> /4	35/2
$(\leq 1.1\sqrt{f_c^T}b_w d)$			600 mm			
$ \begin{array}{c} > 0.33 \sqrt{f_c^2} b_w d \\ (> 1.1 \sqrt{f_c^2} b_w d \) \end{array} = 1 \\ \end{array} $	El menor de:	d/4	d/2	3	/8	36/4
	ni menor de:		300	mm		

Tabla 6.3.5.4.4 – $A_{\rm stable}$ requerida

▲ Go to Index

• Column design of <u>low ductility structure</u> - 1

2017 4	2023		
7.3.1 Geometry The ratio of the largest transverse dimension of a column to the smallest shall not exceed 4. The smallest transverse dimension shall be at least equal to 200 mm.	6.4.2 General requirements 6.4.2.1.1 The ratio between the largest transverse dimension of a column and the smallest shall not exceed 4. The smallest transverse dimension shall be at least equal to 250 mm for structures of Subgroup B2 and equal to 300 mm for structures of Group A and Subgroup B1.		
	 6.4.3 Limits of reinforcement 6.4.3.2 Minimum shear reinforcement 6.4.3.2.1 A minimum area of shear reinforcement, A_{v,min}, shall be provided in each column that is the greater of a) and b): 		
	a) $0.062\sqrt{f_c'} \frac{b_w s}{f_{yt}}$ $\left(0.2\sqrt{f_c'} \frac{b_w s}{f_{yt}}\right)$ b) $0.35 \frac{b_w s}{f_{yt}}$ $\left(3.5 \frac{b_w s}{f_{yt}}\right)$		

6.4.4.4 Transverse reinforcement

Tabla 6.4.4.5.1 - Separación máxima del refuerzo por cortante en columnas de estructuras de ductilidad baja

	Separación máxima, s		
Vs requerido		Columnas no presforzadas	Columnas presforzadas
$\leq 0.33\sqrt{f_c'}b_w d \\ \left(1.1\sqrt{f_c'}b_w d\right)$	La menor	d/2 600 mm	3 <i>h</i> /4
	de:	d/4	3 <i>h</i> /8
$> 0.33 \sqrt{f_c} b_w d \\ \left(1.1 \sqrt{f_c} b_w d\right)$	La menor de:	300 mm	

• Column design of <u>low ductility structure</u> - 2

2017	2023
	6.4.4.4 Transverse reinforcement
	6.4.4.4.2.4 At both ends of the column, closed stirrups complying with
	14.7.3 shall be provided with spacing so over a distance Lo measured
	from the face of the node. The spacing so shall not exceed the lesser
	of a) to d):
	a) For Grade 42 bars, the lesser of 8db of the thinnest longitudinal
	bar and 200 mm
	b) For Grade 56 bars, the lesser of 6db of the thinnest longitudinal
	bar and 150 mm
	c) For Grade 70 bars, the lesser of 5db of the thinnest longitudinal
	bar and 150 mm
	d) One-fourth of the smallest cross-sectional dimension of the
	column.
	The length Lo shall not be less than the maximum value of a) to d):
	a) One-sixth of the clear height of the column
	b) The largest cross-sectional dimension of the column
	c) 600 mm
	d) H/2 for ground floor or first floor columns subject to earthquake,
	where H is the clear height of the column.

▲ Go to Index

• Wall design of <u>low ductility structure</u> - 1

interpolated.

2017	2023		
7.4.2.4 Shear force	6.5.5.3 Shear force in the plane		
a) Shear force by the concrete The shear force, V_{cR} by the concrete in walls will be determined with	6.5.5.3.2 $\rm V_u$ at any horizontal section shall not exceed		
the following criteria:	$0.63\sqrt{\mathrm{f}_{c}^{'}}A_{c u}$ $\left(2\sqrt{\mathrm{f}_{c}^{'}}A_{cu} ight)$		
1. If the ratio of total height to length, ${\bf H_m/L}~{\bf of}~{\bf the}~{\bf wall}~{\rm or}~{\rm H_s}~/{\rm L}~{\rm of}$	(6.5.5.3.2)		
the segment (see item 8.4.2.4) does not exceed 1.5 , equation 7.4.3 ► will be applied.	6.5.5.3.3 V _R shall be calculated as:		
$V_{cR}=0.27F_R\sqrt{{ m f}_c^{'}}tL$	$V_R = F_R \left(lpha_c \lambda \sqrt{{ m f}_c^{'}} + p_t f_{yt} ight) A_{cv}$		
(7.4.3)	(6.5.5.3.3)		
$\left(V_{cR}=0.85F_R\sqrt{\mathrm{f}_{c}^{'}}tL ight)$	where:		
	α_{c} = 0.25, if SI is used (0.80, if MKS is used) for H_{m}/L_{m} \leq 1.5		
2. If ${\rm H}_m/L$ or ${\rm H}_s$ /L is equal to 2.0 or greater, equations 5.3.1 or	α_c = 0.17, if SI is used (0.53, if MKS is used) for $H_m/L_m \leq 2.0$		
5.3.2 shall apply, where b shall be replaced by the thickness of the	α_{c} varies linearly between the values above if 1.5 < $\rm H_{m}/L_{m}$ < 2.0		
wall, t; and the effective height of the wall shall be taken as 0.8L.			
When $\rm H_m/L$ or $\rm H_s$ /L is between 1.5 and 2.0, it may be linearly	6.5.5.3.4 Where walls are subject to net tension forces, α_c in Eq.		

6.5.5.3.3 shall be taken as:

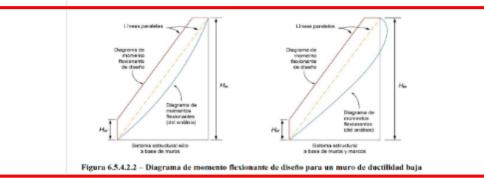
$$lpha_c=0.17\left(1+rac{P_u}{3.5A_g}
ight)\geq 0.0$$

(6.5.5.3.4)

$$\left(lpha_c=0.53\left(1+rac{P_u}{35A_g}
ight)\geq 0.0
ight)$$

where P_u is negative under tension.

▲ Go to Index


Wall design of low ductility structure - 2

2017	4			2023
7.4.2.1 Scope and general requirements	6.5.3 Design limits			
The thickness of these walls will not be less than 130 mm.	6.5.3.2 The minimum thickness of solid walls shall be as indicated in table			
		6.5.3.2. Smaller thicknesses shall be accepted if their strength and stability		
		are demonstrated by structural analysis and/or laboratory tests.		
	Tabla 6.5.3.2 - Espesor mínimo de muros macizos			
	Tipo	de muro		Espesor mínimo /
		carga ^[1]	El monor das	140 mm
	Dec	carga	El mayor de:	0.06 veces la altura no restringida lateralmente
	De relleno	(no de carga)	El mayor de:	100 mm
			ra mayor de:	0.04 veces la altura no restringida lateralmente
		contacto con el		200 mm

^[1] Para ser diseñados con el método simplificado de 6.5.5.2.

terreno y cimentaciones

6.5.4.2.2 En muros en que H_m/L ≥ 2 se considerará al momento flexionante de diseño a lo largo de Hcr con un valor constante e igual al momento Mu obtenido del análisis en la base del muro. La altura crítica Hcr será igual al valor mayor de L o Mu/4Vu. A partir de la altura del muro, Hcr. se usará un diagrama de momentos flexionantes lineal tal que sea paralelo a la línea que une los momentos calculados en la base y en la punta del muro (fig. 6.5.4.2.2). En edificios con muros perimetrales de cimentación, se considerará el momento flexionante de magnitud constante a lo largo del primer nivel del sótano y de la altura crítica. Hcr. medida desde el desplante del muro en la parte superior del cajón hacia arriba.

▲ Go to Index

• Wall design of low ductility structure - 3

7.4.3.2

b) Shear force taken by the web steel

The amount of reinforcement parallel to the direction of the design shear force, p_{m} , shall be calculated using the expression

2017

$$p_m = \frac{V_u - V_{cR}}{F_R f_y A_{cm}}$$

(7.4.4)

and that of the reinforcement perpendicular to the design shear force, $\mathbf{p}_{n^{\prime}}$ with

$$p_n = 0.0025 + 0.5\left(2.5 - \frac{H_m}{L}\right)(p_m - 0.0025)$$

(7.4.5)

where:

$$p_m=rac{A_{vm}}{s_mt}; \qquad p_n=rac{A_{vn}}{s_nt};$$

c) Minimum reinforcement, spacing and anchoring of the reinforcement

The reinforcement quantities pm and pn will not be less than 0.0025.

6.5.6 Reinforcement limits

6.5.6.1 In case of

$$V_u \leq 0.04 F_R lpha_c \lambda \sqrt{\mathrm{f}_c'} A_{cv} ~\left(V_u \leq 0.13 F_R lpha_c \lambda \sqrt{\mathrm{f}_c'} A_{cv}
ight)$$

2023

Tabla 6.5.6.1 – Refuerzo mínimo para muros con $V_u \leq 0.04F_R \alpha_c \lambda \sqrt{f_c} A_{cv} \left(V_u \leq 0.13F_R \alpha_c \lambda \sqrt{f_c} A_{cv} \right)$

Tipo de muro	Tipo de refuerzo no presforzado	Tamaño de barra o alambre	<i>f</i> ₃ , MPa (kg/cm²)	<i>p₁</i> mínima (longitudinal) ^[1]	<i>p</i> (mínima (transversal)
	Barras corrugadas	≤ No. 5 > No. 5	≥ 420 (4 200) ≥ 420 (4 200)	0.0012 0.0015	0.0020 0.0025
Colado en sitio	Alambres soldados, corrugados	$\leq 16 \ { m mm}$	Cualquier	0.0012	0.0020

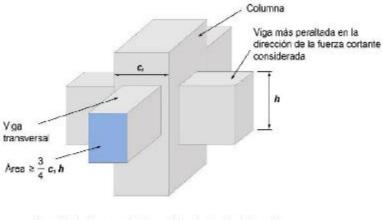
6.5.6.2 In case of

$$V_u > 0.04 F_R lpha_c \lambda \sqrt{f_c'} A_{cv} \left(V_u > 0.13 F_R lpha_c \lambda \sqrt{f_c'} A_{cv}
ight)$$

a) p_l shall be the greater of the value calculated from Eq. 6.5.6.2 and 0.0025, but need not exceed p_t calculated to resist shear from 6.5.5.3.3

$$p_l \ge 0.0025 + 0.5 \left(2.5 - \frac{H_m}{L_m}\right) (p_t - 0.0025)$$

(6.5.6.2)

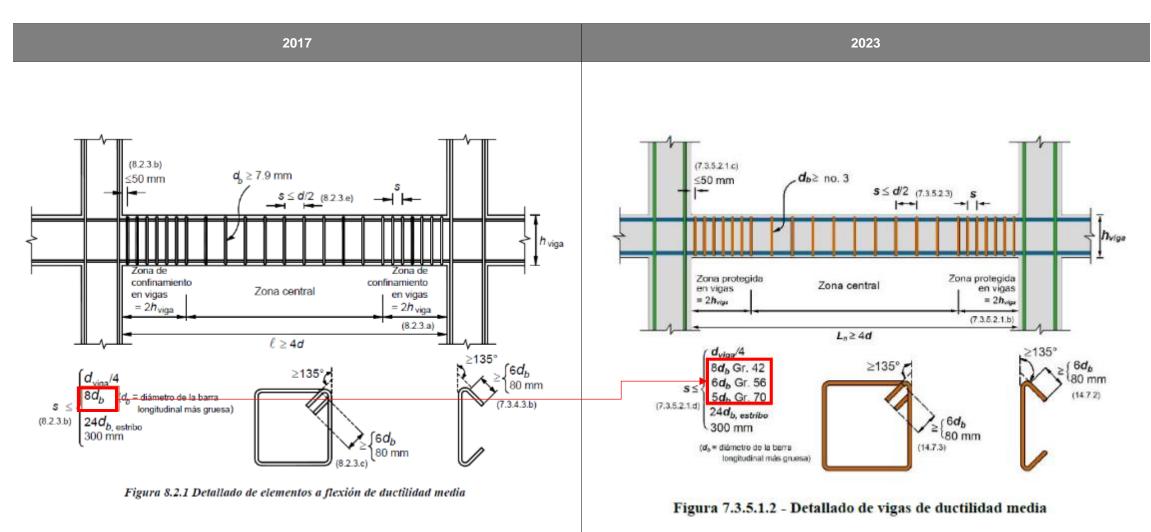

b) p_t ≥ 0.0025.

• Wall design of low ductility structure - 4

2017	2023
7.4.3.2 c) Minimum reinforcement, spacing and anchoring of the	6.5.7 Detailing of reinforcement
reinforcement The reinforcement will be placed uniformly distributed with a separation of no more than 350 mm.	6.5.7.1.1 The spacing s of longitudinal (vertical) reinforcement in cast-in- place walls shall not exceed the lesser of 3t and 450 mm . If reinforcement is required to resist shear in the plane of the wall, the spacing of longitudinal reinforcement shall not exceed L/3.
	6.5.7.2.1 The transverse (horizontal) reinforcement spacing s in cast-in- place walls shall not exceed the lesser of 3t and 450 mm . If reinforcement is required to resist shear in the plane, s shall not exceed L/5.

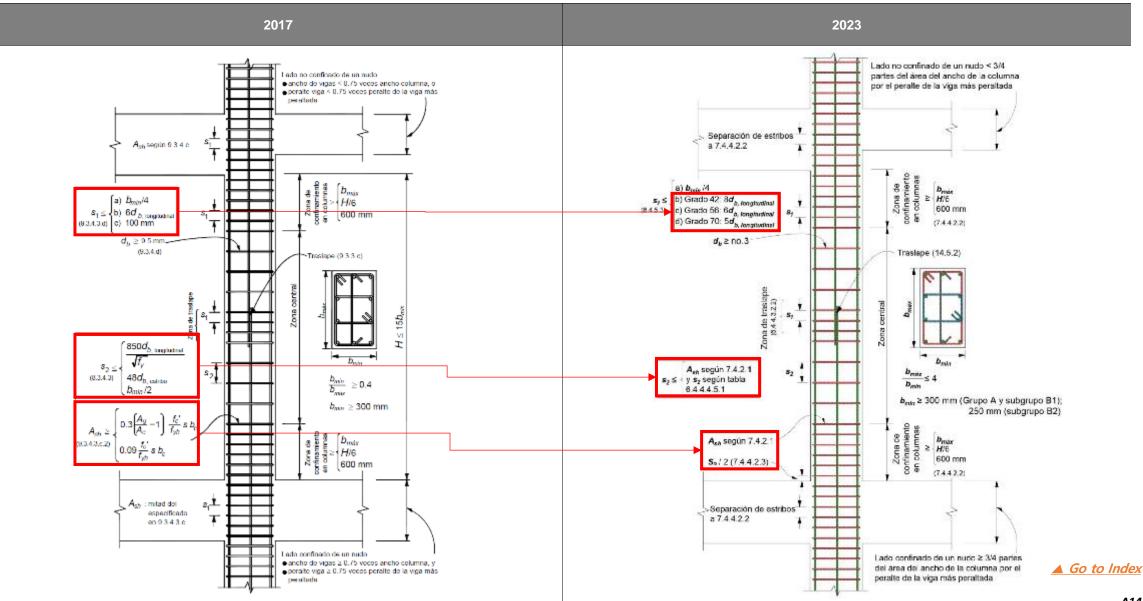
• Joint design of low ductility structure

: Applied the joint design under low ductility system.



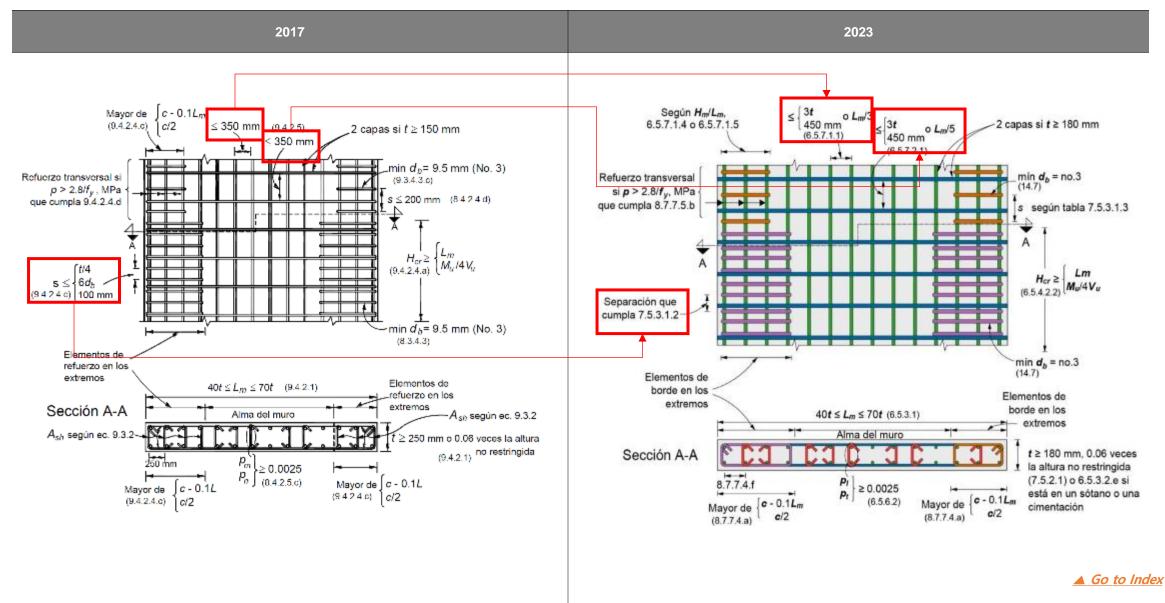
Dirección de fuerza cortante considerada centro de la unión

Figura C6.9.2 – Sección mínima de una viga transversal para propósitos de confinamiento de la unión viga-columna (adaptada de ACI CODE-318-19)


▲ Go to Index

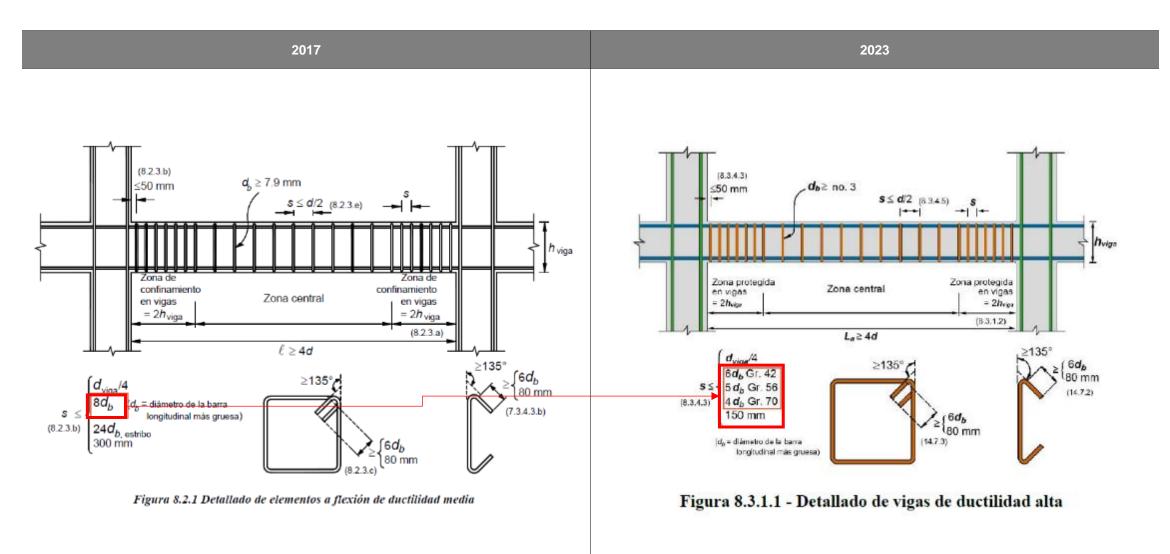
• Beam design of *medium ductility structure*

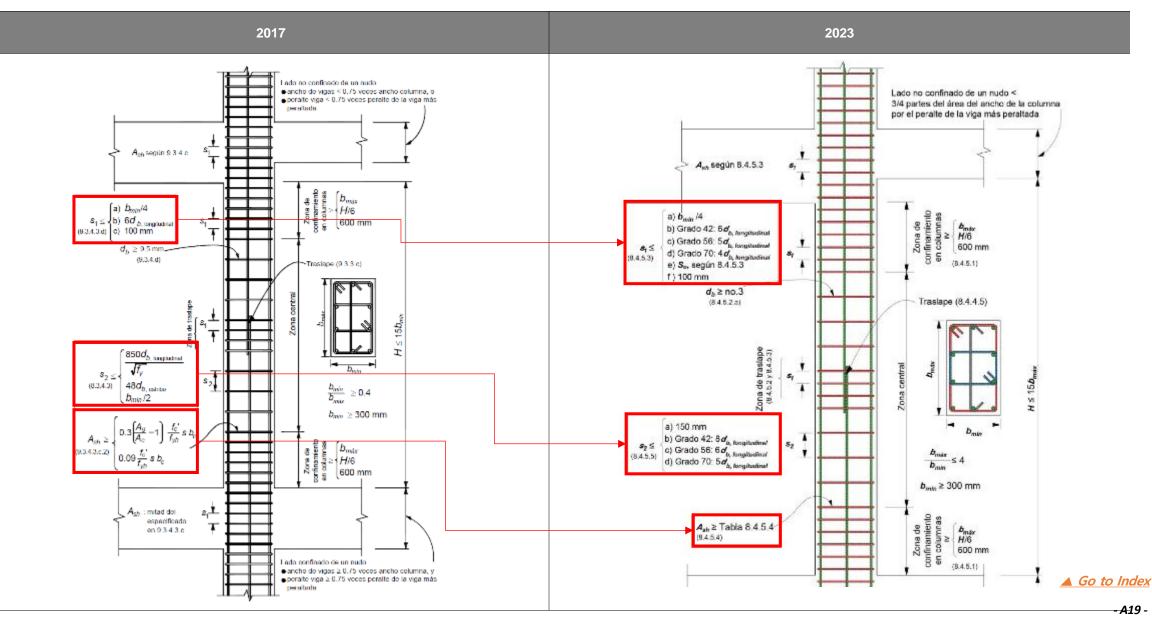
▲ Go to Index


• Column design of medium ductility structure - 1

• Column design of <u>medium ductility structure - 2</u>

2017	2023
	7.4.4.2.2 Closed stirrups complying with $\underline{14.7.3}$ shall be provided at both ends of the column with spacing so over a distance Lo measured from the face of the node. Spacing so shall not exceed the lesser of a) to d):
	 a) For Grade 42 bars, the lesser of 8db of the thinnest longitudinal bar and 200 mm b) For Grade 56 bars, the lesser of 6db of the thinnest longitudinal bar and 150 mm c) For Grade 70 bars, the lesser of 5db of the thinnest longitudinal bar and 150 mm d) One-fourth of the smallest cross-sectional dimension of the column. The length Lo shall not be less than the maximum value of a) to d): a) One sixth of the free height of the column b) The largest dimension of the cross section of the column c) 600 mm d) H/2 for ground floor columns or the first level subject to earthquakes, where H is the free
	height of the column.
8.3.2 Minimum flexural strength of columns	7.4.2.2 Minimum flexural strength of columns
8.3.2.1 General procedure	7.4.2.2.2 The flexural strengths of the columns shall satisfy Eq. 7.4.2.2.2:
The flexural strengths of columns at a node must satisfy equation 8.3.1	
ΣMe ≥ 1.2ΣMg (8.3.1)	ΣMnc ≥ 1.2 ΣMnb (7.4.2.2.2)
ZINE 2 1.22ING (0.5.1)	where:
where:	ΣMnc sum of the nominal flexural strengths of the column sections above and below the node,
Σ Me adds to the node span of the moments of resistance in the analysis plane calculated with a	
resistance factor equal to one, of the columns that reach that node; the moment of resistance	corresponding to the factored axial force that, in an interaction diagram of the column, produces
will be that which corresponds to the factored axial load that, in an interaction diagram of the column, produces the lowest moment of resistance. When calculating the moments of resistance	the smallest resistant moment.
in the analysis plane, the moments that act in the perpendicular plane will not be considered; and	node. In the case of monolithically cast beams with slabs, it will not be necessary to consider the contribution of the slab reinforcement steel to the flexural strength.
Σ Mg adds to the node span of the moments of resistance calculated with a resistance factor equal to one, of the beams that reach the node.	The flexural strength of columns and beams shall be calculated with a steel stress of fy and a resistance factor equal to 1.0. The above sums must be made so that the moments of the
The above sums must be made so that the moments of the columns oppose those of the beams The condition must be met for both directions in which the earthquake can act.	columns oppose those of the beams. This condition must be met for both directions in which the earthquake can act.

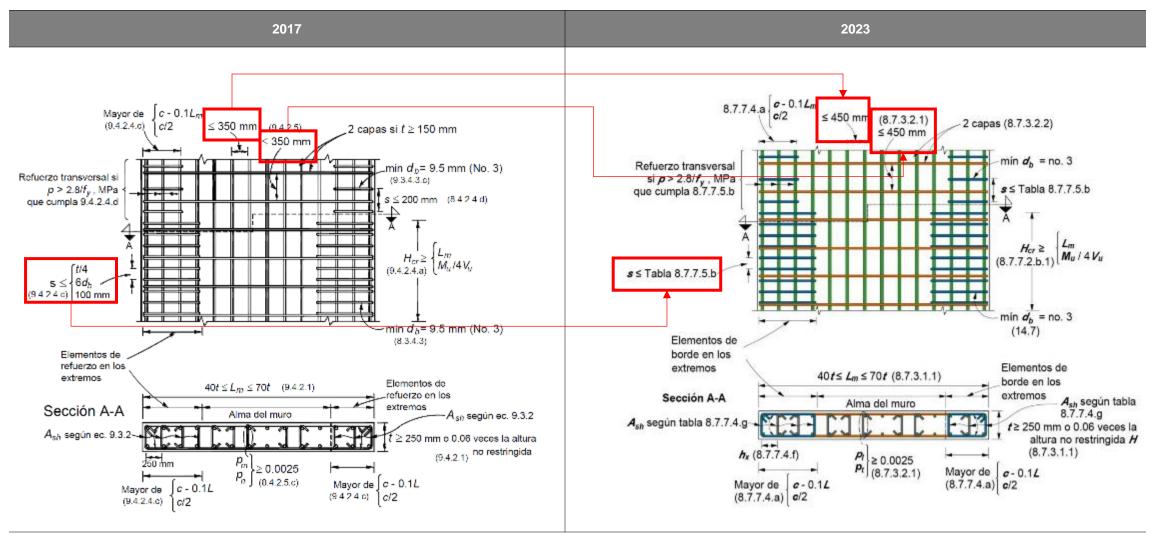

• Wall design of <u>medium ductility structure</u>


• Joint design of <u>medium ductility structure</u>

2017	2023
	7.9.2 Beam-column connections
	7.9.2.1 Beam-column connections shall satisfy the detailing requirements of 6.9.7.1.1.2 and 6.9.7.1.1.3. and 7.9.2.2 through
	7.9.2.7 Shear strength of beam-column connections
	7.9.2.7.1 Vu of the node shall be determined in accordance with 8.5.5.1. (Same as Low Ductility System)
	7.9.2.7.2 VR of a beam-column connection shall be calculated in accordance with 6.9.5.2.

• Beam design of <u>High ductility structure</u>

• Column design of <u>High ductility structure - 1</u>


• Column design of <u>High ductility structure - 2</u>

2017	2	.023			
	 8.4.5.3 The spacing of transverse reinforcement shall not exactly a) One-fourth of the smallest transverse dimension of the b) 6db of the thinnest longitudinal bar of the primary flexur c) 5db of the thinnest longitudinal bar of the primary flexur d) 4db of the thinnest longitudinal bar of the primary flexur e) or according to Eq. 8.4.5.3: 	element ral reinforceme ral reinforceme	ent Grade 42 Int Grade 56		
	$s_o = 100 + rac{350 + h_x}{3}$				
	The value of so in Eq. 8.4.5.3 shall not exceed 150 mm and	d shall not be le	ess than 100 m	m.	
	8.4.5.4.b, respectively:				
	$k_f = rac{{{{ m{f}}_{c}}^{\prime}}}{{175}} + 0.6 \ge 1.0$ (8.4.5.4.a)	Refuerzo		l en columnas de marcos	
		Refuerzo transversul Asviste para	Refuerzo transversal Condiciones $P_n \le 0.3A_p \xi' \text{ y}$ $f \xi' \le 70 \text{ MPn} (700 \text{ kg/cm}^2)$		n uplicable
	$k_f=rac{f_c'}{175}+0.6\geq 1.0$ (8.4.5.4.a) $k_n=rac{n_l}{n_l-2}$ (8.4.5.4.b) where nl is the number of bars or bundles of longitudinal	Refuerzo transversul	Conditiones $P_{\alpha} \leq 0.3 A_{B} \xi'$ y $f \xi' \leq 70$ MPn (700	Ecunción	
	$k_{f} = \frac{f'_{c}}{175} + 0.6 \ge 1.0 (8.4.5.4.a)$ $k_{n} = \frac{n_{l}}{n_{l} - 2} \qquad (8.4.5.4.b)$ where nl is the number of bars or bundles of longitudinal reinforcement around the perimeter of the core of a column with rectangular stirrups that are laterally supported by stirrup corners or by standard 135-degree	Refuerzo transversul Awiste para estribos	$Condiciones$ $P_{a} \leq 0.3A_{g}\xi' \text{ y}$ $f\xi' \leq 70 \text{ MPn } (700 \text{ kg/cm}^{2})$ $P_{a} > 0.3A_{g}\xi' \text{ o}$ $f\xi' > 70 \text{ MPn } (700 \text{ c})$	Ecunción El mayor de a) y b):	a uplicable a) $0.3 \left(\frac{A_0}{A_{14}} - b\right) = 0.09 \frac{f}{f_{24}}$

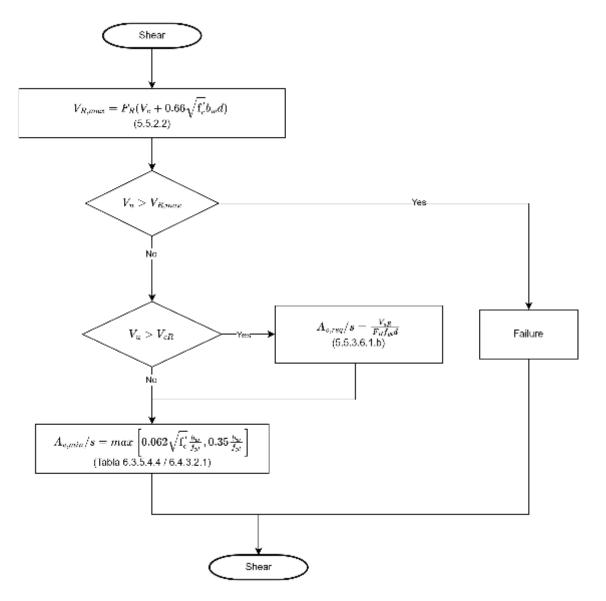
• Column design of <u>High ductility structure - 3</u>

	2017	2023
		8.4.5.5 Beyond the length calculated in accordance with 8.4.5.1, helical reinforcement complying with 14.7.4 or stirrups and clips in accordance with 14.7.3 and 14.7.2, respectively, shall be provi ded. The spacing s shall not exceed the lesser of a) through d), unless a greater amount of trans verse reinforcement is required in accordance with 8.4.4.5 and 8.4.6:
		a) 150 mmb) 8db of the thinnest longitudinal bar, for Grade 42 barsc) 6db of the thinnest longitudinal bar, for Grade 56 bars
		 d) 5db of the thinnest longitudinal bar, for Grade 70 bars. 8.4.5.1 The minimum confining transverse reinforcement specified in 8.4.5.2 to 8.4.5.4 shall be provided in a length lo at both ends of the member and on both sides of any section where longitudinal reinforcement is likely to yield in flexure under lateral displacements in the inelastic manual field is a section of the member and on both sides of any section where longitudinal reinforcement is likely to yield in flexure under lateral displacements in the inelastic manual field is a section.
		 range of behaviour. The length lo shall be the greater of a) to c): a) The greatest depth of the column at the node face or at the section where longitudinal reinforcement is likely to yield in flexure (see Fig. 8.4.1) b) H/6, where H is the clear height of the column c) 600 mm.
9.3.2 Minimum flexural stre	ngth of columns	8.4.3 Minimum flexural strength of columns
The flexural strengths of co	lumns at a node must satisfy equation 9.3.1	8.4.3.2 The flexural strengths of the columns shall satisfy Eq. 8.4.3.2:
ΣMe ≥ 1.2ΣMg	(9.3.1)	$\Sigma Mnc \ge 1.2 \ \Sigma Mprb \tag{8.4.3.2}$
esistance factor equal to or be that which corresponds , produces the lowest mom analysis plane, the momen Σ Mg adds to the node spa	to the factored axial load that, in an interaction diagram of the column ent of resistance. When calculating the moments of resistance in the ts that act in the perpendicular plane will not be considered; and an the moments of resistance calculated with a resistance factor equ	in the analysis plane, calculated at the node span. The nominal resisting moment shall be that corresponding to the factored axial load that, in an interaction diagram of the column, produces the smallest resisting moment in the analysis direction, using a resistance factor equal to 1.0. $\Sigma M prb$ sums to the node span the probable flexural strengths of the beams reaching the node. In the case of beams cast monolithically with slabs, when the slab is in tension due to moments
al to one, of the beams that		at the node face, the slab reinforcing steel within the effective width established in 8.5.2.2 shall be considered to contribute to Mprb if the slab reinforcing steel can develop its yield strength at
	nade so that the moments of the columns oppose those of the beams for both directions in which the earthquake can act.	s. the critical section by bending. <u>The flexural strength of the beams shall be calculated with a steel</u> stress of 1.25 fy and a resistance factor equal to 1.0. The above sums must be made so that the moments of the columns oppose those of the beams.
It will not be necessary to c	omply with equation 9.3.1 at the roof nodes.	The condition must be met for both directions in which the earthquake can act.

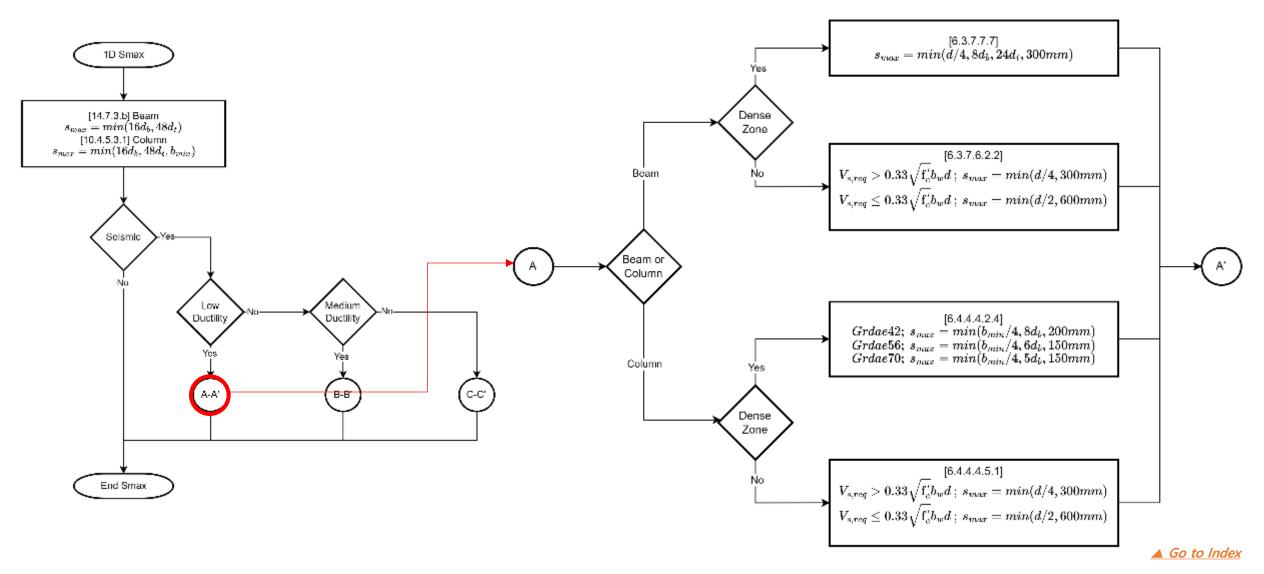
• Wall design of <u>High ductility structure - 1</u>

• Wall design of <u>High ductility structure - 2</u>

2017			2023						
	8.7.4 Design Shear Force								
	8.7.4.3.2 If the factored shear force V _{ush} is determined from an elastic structural analysis, the portion of the detorce of the wall due to the horizontal component of the earthquake, calculated according to NTC-Earthquake, plified by the product $\Omega_v \omega_v$, where Ω_v and ω_v are defined in 8.7.4.3.3 to 8.7.4.3.5.								
	8.7.4.4.3.3 Ωv and ωv shall be ulated as Mpr/Mu at the critical								
		Tab	la 8.7.4.3.3 – Factores Ω, y ω,						
		Condición	Ω_{ν}	0, ^[1]					
		$H_{mic}/L_{m} \leq 1.0$	1.0						
		$1.0 \le H_{\rm MSC}/L_{\rm ell} \le 2.0$	Se permite la interpolación lineal 1.0 y 1.5	1.0					
		$H_{mn}/L_m \ge 2.0$	1.5	$0.8 \pm 0.13 H_{ m n}^{1/3}$					
	[1] H_n is the height of the structure is the level whe				ng system, in meters. The bas				
	8.7.4.3.4 The product $\Omega_v \omega_v$ sha	Ill not exceed 2.0.							

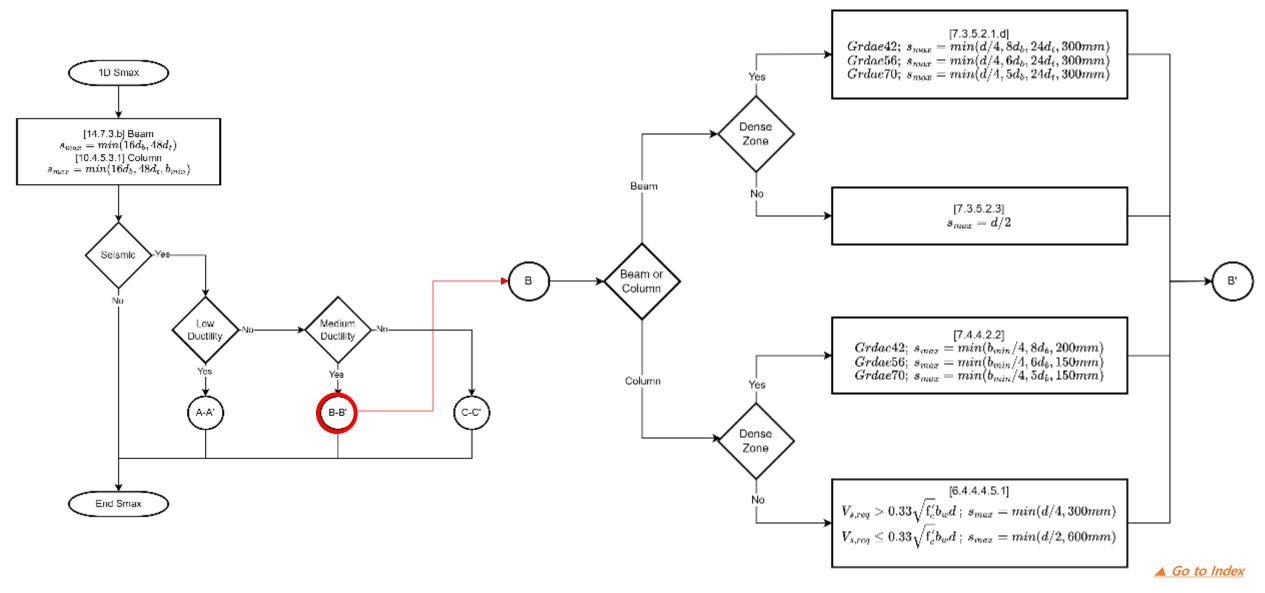

• Joint design of <u>High ductility structure</u>

2017			2023							
	8.5.2 General requirements 8.5.2.1 The forces in the non-prestress									
	shall be calculated assuming that <u>the stress in the tensile flexural reinforcement is 1.25f_y.</u> 8.5.5 Shear strength resistance									
	8.5.5.1 The joint shear resistance in ear shear force V_{uj} shall be calculated in the at the joint face using the values of bear 8.5.2.3, as applicable, and <u>the column</u> 8.5.5.3 V_{Pi}	e horizontal im tension a <u>shear cons</u>	l plane leading to the lat and compression forces	gest value of V determined in a <u>beam flexural s</u>	$_{uj}$ /A _j from the calculated forces accordance with 8.5.2.1 and <u>strengths M_{pr}.</u>					
	Columna	Viga en la dirección de Vaj	Confinamiento por vigas transversules de acuerdo con 8.5.5.3	V _R	n					
		Continua o cumple con	Confinada	$\frac{1.7F_R\sqrt{f_c'}A_i}{\left(5.5F_R\sqrt{f_c'}A_f\right)}$						
	Continua o	8.5.5.3.a y 8.5.5.3.b	No confinada	$ \begin{array}{c} 1.3F_R\sqrt{f_c^*}A_i \\ \left(4.5F_R\sqrt{f_c^*}A_i\right) \end{array} \end{array} $						
	cumple con 6.9.5.2.3	Otra	Confinada	$ \begin{array}{c} 1.3F_{\rm R}\sqrt{f_c^{\prime}}A_f \\ \left(4.5F_{\rm R}\sqrt{f_c^{\prime}}A_f\right) \end{array} $						
		Can	No confinada	$ \begin{array}{c} 1.0 F_R \sqrt{f_c^{\prime}} A_j \\ \left(3.5 F_R \sqrt{f_c^{\prime}} A_j \right) \end{array} $						
		Continua o cumple con	Confinada	$ \begin{array}{c} 1.3 F_{\rm R} \sqrt{f_c^{\prime\prime}} A_j \\ \left(4.5 F_{\rm R} \sqrt{f_c^{\prime\prime}} A_j \right) \end{array} $						
	Oira	8.5.5.3.a y 8.5.5.3.b	No confinada	$ \begin{array}{c} 1.0 F_R \sqrt{f_c^{\prime\prime}} A_f \\ \left(3.5 F_R \sqrt{f_c^{\prime\prime}} A_f \right) \end{array} $						
	5.714	Otra	Confinada	$ \begin{array}{c} 1.0 F_{\rm R} \sqrt{f_c^{\prime\prime}} A_j \\ \left(3.5 F_{\rm R} \sqrt{f_c^{\prime\prime}} A_j \right) \end{array} $						
		Ona	No confinada	$0.67F_R\sqrt{f_c'}A_j$ $\left(2.0F_R\sqrt{f_c'}A_f\right)$	▲ Go to Inde					

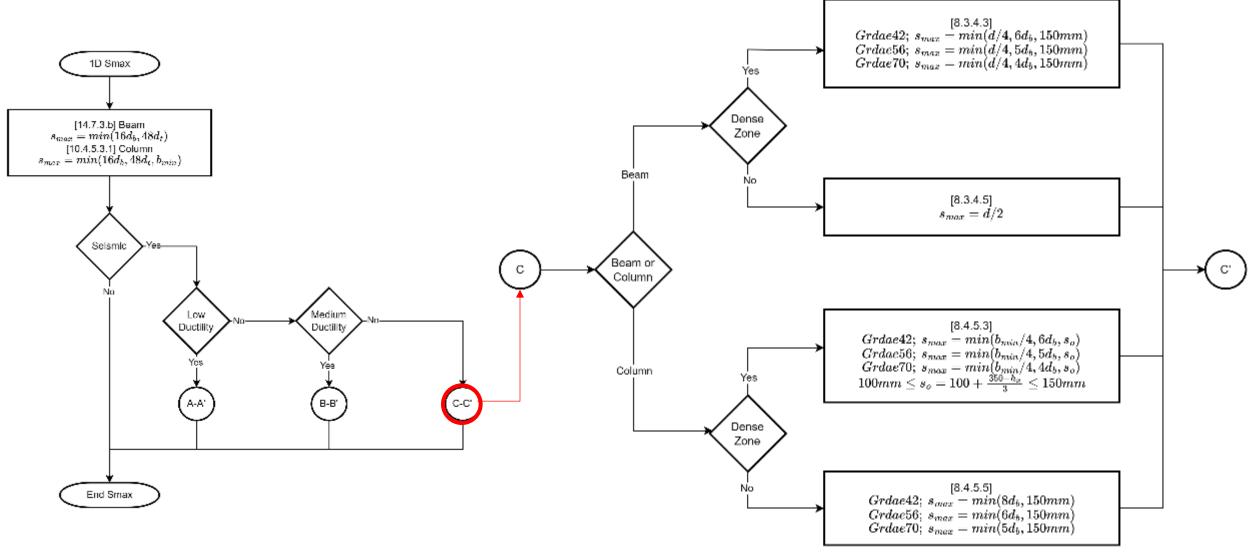

• Transverse Rebar Detail

2017	2023
5.3.5 Shear reinforcement	14.7.3 Close stirrups
5.3.5.1 Reinforcement in beams and columns without prestressing	14.7.3.2 Closed stirrups shall be made of deformed bars with spacings indicated in a) and b):
	a) Clear spacing at least equal to 1.5tmag b) Center spacing not exceeding the lesser of 16db of the longitudinal bar, 48db of the stirrup bar and the distance required according to the type of member (beam, column) and the expected level of ductility (low, medium or high). $s_{max} = min(d_t + 1.5t_{mag}, 16d_b, 48d_t)$

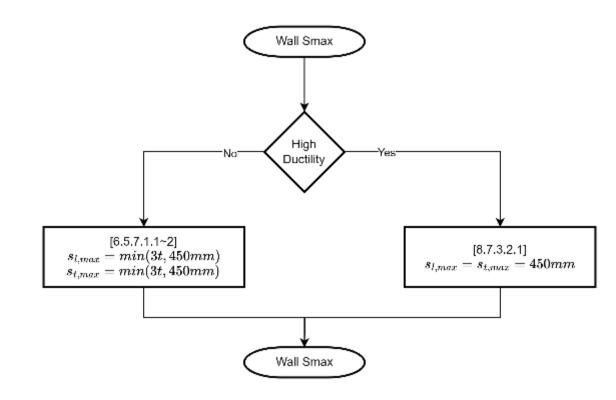
• Design Flow Chart → Shear Reinforcement



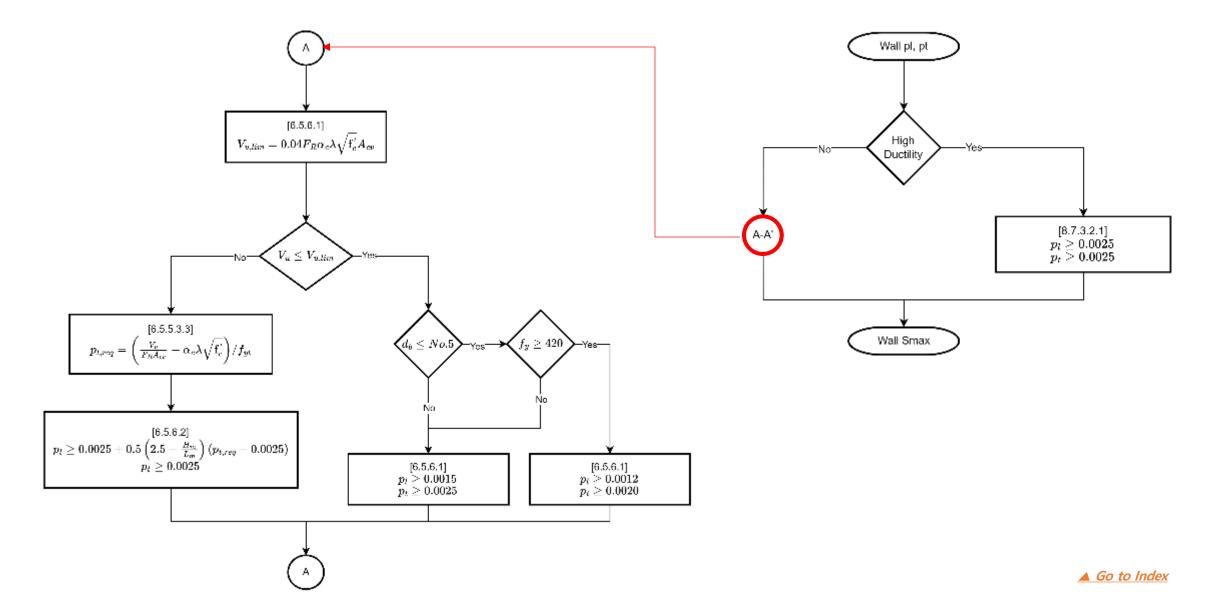
• Design Flow Chart → Max. Space of Shear Reinforcement in 1D member - 01


- A27 -

• Design Flow Chart → Max. Space of Shear Reinforcement in 1D member - 02



- A28 -


• Design Flow Chart \rightarrow Max. Space of Shear Reinforcement in 1D member - 03

• Design Flow Chart $\rightarrow S_{max}$ in Wall Shear Design

• Design Flow Chart → Rebar Ratio Limit in Wall Design

Appendix 02

Russian code in midas Gen

Added design of steel according to SP 16.13330.2017

- 1. Calculation of section strength
- 2. Calculation of the stability of a plane bending form
- 3. Calculation of stability of off-centre compressed elements
- 4. Check of local stability of webs and flanges of the cross section

• Added design of reinforced concrete structures according to SP 63.13330.2018

- 1. Strength check of the normal section of a beam/column element
- 2. Checking the strength of the inclined section of a beam/column, element against the action of moment and shear force
- 3. Calculation of crack resistance and crack opening width in the normal section of a beam element
- Special structural requirements are taken into account in the design of structures
 - 1. Added consideration of structural requirements in seismic design according to SP 14.13330.2018
 - 2. Added accounting of responsibility of the structure according to GOST 27751-2014

• Added load combinations according to SP 20.13330.2016

- 1. Main, special, crane, seismic load combinations
- 2. Added special load combinations according to SP 296.1325800.2017
- Implemented calculation of the pulsation component of the wind load according to SP 20.13330.2016
 - 1. Calculation of the pulsation force acting on a rigid floor diaphragm
- Added response spectrum according to SP 14.13330.2018
- Added base of materials and profiles for calculation according to Russian code

Added design of steel according to SP 16.13330.2017

- 1. Calculation of section strength
- 2. Calculation of the stability of a plane bending form
- 3. Calculation of stability of off-centre compressed elements

Realised calculation types

- **Par. 7.1.1** Strength calculation of elements in central tension or compression
- **Par. 8.2.1, 8.2.3** Strength calculation of bending elements
- **Par. 9.1.1, 9.1.3** Strength calculation of eccentrically compressed and eccentrically tensile elements
- **Par. 8.4.1** Calculation of stability of I-beams of class 1: under the action of a moment
- **Par. 7.1.3** Calculation of stability of elements of continuous section under central compression
- Par. 9.2.2, 9.2.8, 9.2.9, 9.2.10, 9.2.4 Calculation of stability of elements of continuous section under off-centre compression

-2-1-1-1-1-1-1	∇	• 2 •	1 + 3	с I . с	4 • 1	. 5 .	1.2	6.	1.1	7.	1.5	8.	1 - 9	 · 10·	1 + 11	× 1.	·12· i	· 13 ·	1.14.	1 . 15	1.5	A + 1 + 17 + 1 + 18 +	

Material properties:

Fy = 35000, Es = 2.06e+07, MATERIAL NAME = C355

	Design parameters	
Parameter	Description	Value
Gamma_cstr	Working conditions factor (strength)	1
Gamma_cstab	Operating conditions coefficient (stability)	1
SSS type	Type of design stress-strain state	1
Ly	Type of stress state	200
Lz	Unbraced length for the calculation of compressed elements	200
Lef	Design length for fi_b calculation	200
Ку	Effective Length Factor	1
Kz	Effective Length Factor	1
а	Cross rib spacing	Not set
Sigma_loc	Local stress	0
Point of Load	Place of load application	Тор
Load belt for Phi_b	Type of compression girder bracing	Compressed
Type beam fixing for Phi_b	Fixing in the lateral buckling calculation	More than 2 fixes
Load type for Phi b	Load type for lateral buckling	Distributed

Forces and Moments at (I) Point: LCB 1

Axial Force	Fxx = 0	
Shear Forces	Fyy = 0	Fzz = 100000
Bending Moments	My = 1.5e+07	Mz = 0

Forces and Moments for shear check at (J) Point: LCB 1

Axial Force	Fxx = 0	
Shear Forces	Fyy = 0	Fzz = 100000
Bending Moments	My = 0	Mz = 0

Sign conventions for stress and axial force. - Stress: Compression positive. - Axial force: Tension positive.

Calc Unit System: N, mm

Strength check

1. Checking the section for shear forces

 $\begin{array}{l} {\sf ratio1} = {\sf max}(abs(Qx * Sy / (lyn * tw * Rs * Gamma_c)), abs(Qy * Sx / (lxn * tw * Rs * Gamma_c))) = {\sf max}(abs(0 * 252200 / (1.73401e+07 * 6 * 203 * 1)), abs(100000 * 608007 / (2.2093e+08 * 6 * 203 * 1))) = 0.225947 < 1 \\ \end{array}$

[0.225947 <= 1]

OK

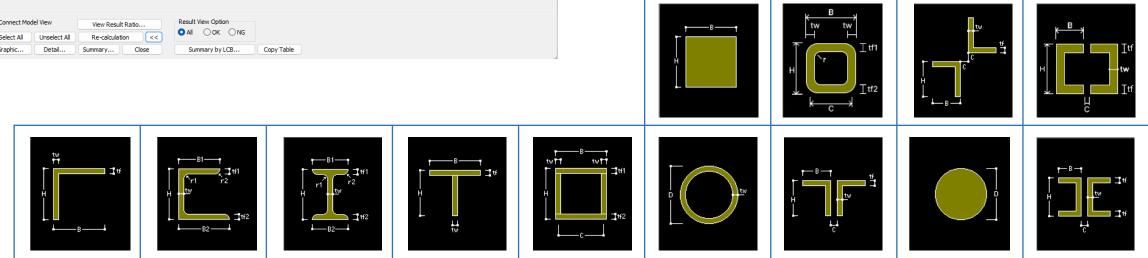
<u>OK</u>

ratio2 = tau / (Rs * Gamma_c) = 45.8673 / (203 * 1) = 0.225947 <= 1

[0.225947 <= 1]

Strength check

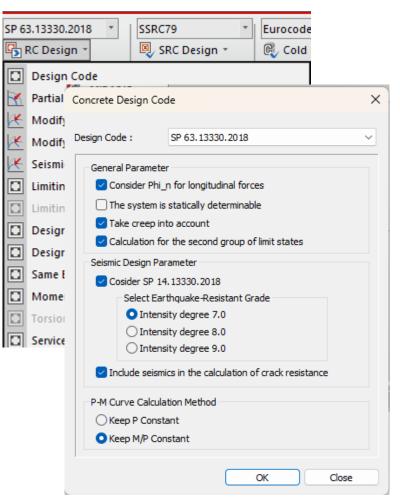
Text report in RTF format.


Added design of steel according to SP 16.13330.2017

Check of local stability of walls and flanges of the cross section 4.

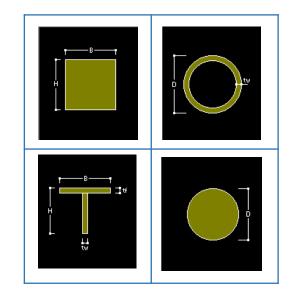
16.13330.2017 Code Checking Result Dialog X	•	Par. 7.3.2, 7.3.3 - W section	eb sta
ode: SP 16.1330.2017 Unit: N, cm Primary Sorting Option orted by Omember Change Update Osecon SECT MEMB CH MEMB SECT MEMB Member NMy.Ed	•	Par. 8.5.1, 8.2.2, 8.5	.3, 8.!
K Com SEL Material Fy LCB A Left Ly RJ OLd Full of the minute of t		moment	
38 18	•	Par. 9.4.2 - Stability	of we
	•	Par. 11.2.2 - Web sta	ability
	•	Par. 7.3.8 - Stability continuous section	of bel
	•	Par. 8.5.18, 8.5.19 -	Stabil
	•	Par. 9.4.7 - Stability	
Connect Model View Result Ratio Result View Option Select All Unselect All Re-calculation <<< All OK NG Graphic Detail Summary Close Summary by LCB Copy Table		рания в страна и стр	H H
$\begin{array}{c} t_{W} \\ t_{H} \\ H \\$	tw1 		F F

Realised calculation types


- stability of centrally compressed elements of continuous W/oh
- **5.7, 8.5.8** Stability of webs under the action of the
- veb of off-centre compressed elements
- ty calculation of seamless or electrically welded pipes
- elt plates (flanges) of centrally compressed elements of
- pility of compressed beam flanges
- rdles (flanges) of off-centre compressed bars

Supported section types for calculation according to SP 16.13330.2017

Added design of reinforced concrete structures according to SP 63.13330.2018


- 1. Strength check of the normal section of a beam/column element
- 2. Checking the strength of the inclined section of a beam/column, element against the action of moment and shear force

Dialog box for specifying parameters for calculation of reinforced concrete structures according to SP 63.13330.2018

Realised calculation types

- Par. 8.1.8, 8.1.14, 8.1.18, 8.1.19, 8.1.24 Strength of normal section against longitudinal forces and bending moments
- Par. 8.1.33, 8.1.35, 8.1.37, 8.1.38, 8.1.40, 8.1.41,
 8.1.42 Strength of the inclined section under shear force and torque action

Supported section types for calculation according to SP 63.13330.2018

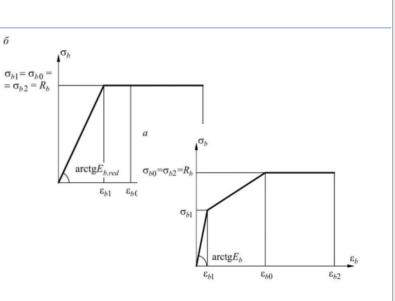
einforcement p	attern			
Location	i-End	di(mm)	Rebar	Asi(mm^2)
Тор	1	12	2-P12	226.195
	2	12	0-P12	0.000
Bottom	1	32	6-P32	4825.486
	2	32	0-P32	0.000
Stirrups	P10	10	P10@200.0	2356.194
Skin	-	-	0-P0	0.000

Skin	-	-	0-P0	0.000
* Checking the streng	th of the normal	section		
1) Strength calculation	of bending eleme	nts (par. 8.1.8)		
LCB lcb_long				
Axial Force Fxx =	D.0 N			
Shear Forces Fyy =	0.0 N , Fzz = 0.0 M	4		
Bending Moments	Mx = 0.0 N·mm , №	/y = 55000000.0	N·mm , Mz = 0.0 N·m	m
x = (Rs*As-Rsc*_As)/(R	b*b) = (340.000×4	825.486-340.000×	226.195)÷(14.500×300	1.000) = 359.485 mm
h0 = h-as = 700.000-7	0.000 = 630.000 r	nm		
ksi = x/h0 = 359.485÷	630.000 = 0.571			
ksi_R = 0.5384621 < k	si = 0.571			
$x = ksi_R*h0 = 0.538 \times$	630.000 = 339.231	mm		
Mult = Rb*b*x*(h0-0.5	*x)+Rsc*_As*(h0a	es) = 14.500×300.0	00×339.231×(630.000	-0.5×339.231)+340.000×226.195
×(630.000-70.000) = 7	22435793.772 N·m	m		
Rat-Normal = M / M_	ult = 55000000.0	00+722435793.772	= 0.76131333	
[0.761 ≤ 1]—OK				
* Shear Check				
1) Calculation by conc	rete strip between	inclined sections (par. 8.1.32)	
Y Dir				
LCB lcb_long				
Axial Force Fxx =	D.0 N			
Shear Forces Fyy =	0.0 N , Fzz = 0.0 M	4		
Bending Moments	Mx = 0.0 N·mm , №	/hy = 550000000.0	N·mm , Mz = 0.0 N·m	m
Phi_b1 = 0.300				
Qult = Phi_b1*Rb*b*h	p = 0.300×14.500>	300.000×630.000	= 822150.000 N	
Rat-Shear = Q/Qult =	0.000+822150.000	0.000000000		

Text report in DOC format.

[0.000 ≤ 1]—OK

- B04 -


Added design of reinforced concrete structures according to SP 63.13330.2018

3. Calculation of crack resistance and crack opening width in the normal section of a beam element

ode : SP Gorted b	0	330.20 Membe Propert	r	Ur Results	ÖR	rength ebar De	etail	Primary So	rting Option				
МЕМВ		Sec	tion	fck	Os	ervicea	bility		. I				
	SEL				000	снк	Deffull		Raf-Norm	LCB	Rat-Torsi	LCB	Rat-Shea
SECT	SEL	Bc	Hc	fyk	PUS	CHK	Raf-full	LCB	al	LCB	on	LCB	r
Span		bf	hf	fyw									
0	_		(0) 800	14500.0	I	ок	0.8932	1	0.8932	0	-	1	0.7931
1		0.300		340000	M	ок	0.8932	1	0.8932	0	-	1	0.7931
3.0000			0.000	170000	J	ОК	0.8932	1	0.8932	0	-	1	0.7931
0			(1) 700		1	ОК	0.7613	1	0.7613	0	-	1	0.5749
2		0.300		340000	М	ОК	0.7613	1	0.7613	0	-	1	0.5749
3.0000			0.000	170000	J	ОК	0.7613	1	0.7613	0	-	1	0.5749
0			(2) T60		1	ОК	0.7965	1	0.7965	0	-	1	0.7198
3		0.200	0.600	340000	М	ОК	0.7965	1	0.7965	0	-	1	0.7198
3.0000		0.400	0.100	170000	J	ОК	0.7965	1	0.7965	0	-	1	0.7198
0			3(0) 20	14500.0	1	ОК	0.0659	3	0.0659	0	-	3	0.0000
7		0.500	0.200	340000	М	ОК	0.0659	3	0.0659	0	-	3	0.0000
3.0000		0.000	0.000	170000	J	ОК	0.0659	3	0.0659	0	-	3	0.0000
0		8_1_18	3(1) 20	14500.0	1	ОК	0.0515	3	0.0515	0	-	3	0.0000
8		0.500	0.200	435000	М	ОК	0.0515	3	0.0515	0	-	3	0.0000
3 0000		0 000	0 000	170000		ОК	0.0515	3	0.0515	0	- 1	3	0 0000
) Conne	ct Moo	lel View						Result Viev	v Option				
Selec	t All		Unseled	:t All	Re	calculat	ion		ок Ола	;			
Graph	nic		Detail		Summ	ary	<<						

Realised calculation types

• **Par. 8.2.4** - **8.2.7** - Calculation of crack resistance and crack width in a normal section of a rod element

Specifying a custom concrete deformation diagram (when calculating using a nonlinear deformation model - par. 8.1.24).

General	Steel	Concrete	SRC	Cold For
Modify n	onlinear	deformatio	n model	of c 🗸 🛄
- Option				
O Add	/Replace	C) Delete	
-				
Diagrar	n type	Two-line	e stress	-st ∨
Parame	eters of t	the deforma	ation mo	del
Ob	y materi	al		
O u	ser defir	ne		
Comp	ression			
Sigma	a_b1	0	kN/m²	<u>^2</u>
Sigma	a_bO	0	kN/m²	<u>^2</u>
Sigma	a_b2	0	kN/m²	<u>^2</u>
Epsilo	on_b1	0		
Epsilo	on_b0	0		
Epsilo	n_b2	0		
Tensio	on			
Sigma	a_bt1	0	kN/m²	<u>^2</u>
Sigma	a_btO	0	kN/m²	<u>^2</u>
Sigma	a_bt2	0	kN/m²	<u>^2</u>
Epsilo	on_bt1	0		
Epsilo	on_bt0	0		
Epsilo	on_bt2	0		
		Apply	Clo	se

Special structural requirements are taken into account in the design of structures

Added consideration of structural requirements in seismic design according to SP 14.13330.2018
 Added accounting of responsibility of the structure according to GOST 27751-2014

14 Steel	Seis Memb F	Params V	
Option -		General Steel Concrete SRC Cold Fo	r
Add/R	eplace	Seismic accounting for member (RC) \sim	
aram			
itr_1	1.3	Option	
ntr_2	1.2	Add/Replace Oelete	
		Param	
ntr_3	1	Working condition coefficient for strength testing - mtr1	
tr_4	1	1.2	
	Apr	Coefficient of working conditions for strength testing of the headframe	
		1	

5.15 When calculating structures for strength and stability, in addition to the coefficients of working conditions accepted in accordance with other current regulatory documents, an additional coefficient of working conditions mtr, determined according to Table 5.4, should be introduced. The mtr coefficient is multiplied by the design resistance of the corresponding material of the structure.

ſ	Load Pr	opertie	s				Ŭ				
			nd Factors								
i		No	Load Case	Туре	gF	gfa	gN	gFo	dL	Dominace_	1 Dominace_2
	₽		loadcase_lon	Constant	1.10000				1.00000		
			loadcase_sho seismic	Short-term Seismic	1.20000				0.35000		
artial Safety Factors	*		30131110	Ceramic	1.00000		1.00000	1.00000	0.00000	-	,
Design Code : SP 16.13330.2017											
Partial Safety Factors	-										ок
Reliability coefficient in time-resistance calcu			-	-							
Reliability coefficient of responsibility			1]	
Working conditions factor (strength)			1								
Operating conditions coefficient (stability)			1								
		ОК		Close							
										1	

10.1 Depending on the class and level of responsibility of structures (see 3.1), reliability coefficients for responsibility should be used in their design, the minimum values of which are given in Table 2.

×

Added load combinations according to SP 20.13330.2016

1. Main, special, crane, seismic load combinations

2. Added special load combinations according to SP 296.1325800.2017

Option	
● Add O Repla	ce 🛛 Add Envelope
Code Selection	
🖸 Steel 🛛 🔿 Co	ncrete 🔿 SRC
Cold Formed Steel	○ Footing
Aluminum	
Design Code : S	P 20.13330.2016 V
) efine Factors for Vari	iable Actions
Factors f	or Variable Actions
artial factors for actio	ne
	ns factors for actions
artial factors for actio Partial Define links between	factors for actions
Partial	factors for actions
Partial Define links between Set Lo	factors for actions
Partial Define links between Set Lo Set Lo	factors for actions
Partial Define links between Set Lo	factors for actions
Partial Define links between Set Lo Set Lo	factors for actions
Partial Define links between Set Lo ienerate Additional Lo Main	factors for actions

Dialog box for controlling the generation of combinations according to SP 20.13330.2016

SP 20.13330.2016

6.2 Depending on the load composition to be taken into account, a distinction should be made:

a) the main load combinations consisting of constant, long-term and shorterm loads

$$C_m = P_d + (\psi_{l1}P_{l1} + \psi_{l2}P_{l2} + \psi_{l3}P_{l3} + \dots) + (\psi_{t1}P_{t1} + \psi_{t2}P_{t2} + \psi_{t3}P_{t3} + \dots);$$
(6.1)

6) special load combinations consisting of constant, long-term, short-term and ne of the special loads.

 $C_{s} = C_{m} + P_{s'}(6.2)$

where C_m - load for the main combination; C_s - load for a special combination; ψ_{li} (i = 1, 2, 3,...,) - combination coefficients for long-term loads; ψ_{ti} (i = 1, 2, 3,...,) - combination factors for short-term loads.

Load Combinations

General Steel Design Concrete Design SRC Design Cold Formed Steel Design Footing Design Load Combination List

	No	Name	Active	Туре	Load 1(ST)	Load 2(ST)	Load 3(ST)
\mathbf{F}	1	sLCB1	Stren	Add	1.1000		
	2	sLCB2	Stren	Add	0.900		
	3	sLCB4	Stren	Add	1.100	1.2000	
	4	sLCB9	Stren	Add	1.1000		1.2000
*					L		

The example establishes that Load 2 and Load 3 are mutually exclusive loads, so they are included in different combinations when forming the combination.

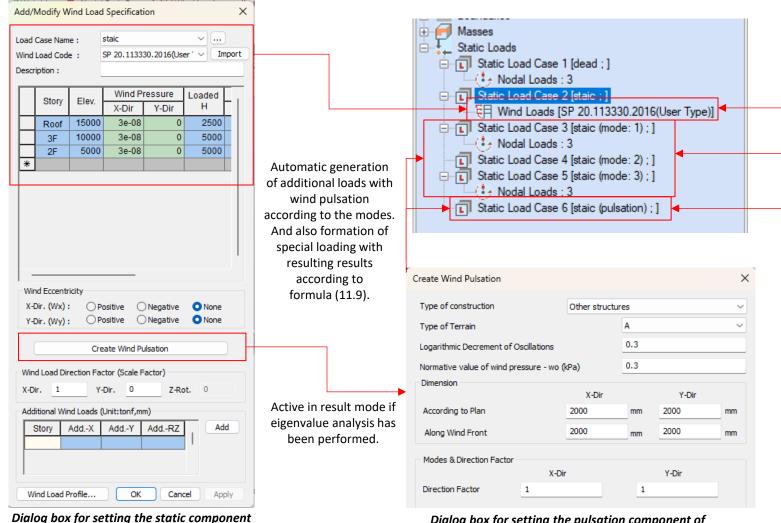
Loa	ad Pro	operties	5								
	.oad (Cases an	d Factors								
		No	Load Case	Туре	gF	gfa	gN	gFo	dL	Dominace_1	Dominace_2
	•	1	Load 1	Constant	1.10000	0.90000	1.00000	1.00000	1.00000	Γ	Г

	1	Load 1	Constant	1.10000	0.90000	1.00000	1.00000	1.00000	Г		
	2	Load 2	Short-term	1.20000		1.00000	1.00000	0.35000	Γ	Γ	
	3	Load 3	Short-term	1.20000		1.00000	1.00000	0.35000	Γ	Γ	
*											
	,										

Dialog box for assigning reliability coefficients

ors f	or Varia	able Actions								
d C	ases an	d Factors								
	No	Load Case	Туре	Psi1	Psi2	Psi3	PsiSe	PsiO1	PsiO2	PsiO3
	1	Load 1	Constant	1.00000			0.90000	1.00000	1.00000	1.00000
	2	Load 2	Short-term	1.00000	0.90000	0.70000	0.50000	0.50000	0.30000	0.30000
	3	Load 3	Short-term	1.00000	0.90000	0.70000	1.00000	0.00000	0.00000	0.00000
*										

Dialog box for assigning load combination factors


Fa	ctors f	for Varia	able Actions						
	Load C	Cases an	d Factors						
		No	Load Case	+/-	Semblance	Combination	Mutual	Companionship	
	\mathbf{F}	1	Load 1			Г			
		2	Load 2	V			3		
		3	Load 3	Г			2		
	*								

Dialog box for assigning links and rules for forming load combinations

Implemented calculation of the pulsation component of the wind load according to SP 20.13330.2016

1. Calculation of the pulsation force acting on a rigid floor diaphragm

of the wind load - Wm

Dialog box for setting the pulsation component of the wind load - Wg SP 20.13330.2016

defined as the sum of the average wm and pulsation wg components $w = w_m + w_{g}$ (11.1) 11.1.8* The standard value of the pulsation component of the main wind load wg at the equivalent height ze should be determined as follows: a) for structures (and their structural elements) with the first frequency of natural vibrations f1, Hz, greater than the limit value of natural frequency flim, (see 11.1.10) - by the formula $w_g = w_m \zeta(z_{\theta}) v$, (11.5) b) for all structures (and their structural elements) with $f_1 < f_{1m} < f_2$. according to the formula $w_g = w_m \xi \zeta(z_e) v, \tag{11.7}$ c) for structures with the second natural frequency less than the limiting frequency, it is necessary to carry out the dynamic calculation taking into account s of the first natural vibration forms. The number s should be determined from the condition fs < flim < fs+1; d) when designing buildings, it is allowed to take into account the dynamic response of the three lowest natural vibration modes (two bending and one torsional or mixed torsional-bending). 11.1.9 The forces and displacements when considering the dynamic reaction by s eigenforms are determined by the formula

 $X^2 = \sum X_s^2$, (11.9)

11.1.2* In all cases, the standard value of the basic wind load w should be

Fac	tors	for Varia	able Actions					
EL.	oad (Cases an	d Factors					
		No	Load Case	+/-	Semblance	Com	bination	•
	►	1	dead					Creation of
		2	staic	Γ	3	3		total wind load
		3	staic (pulsation)	>	2	2		
		4	1 2 7 1 45					

o Index - B08 -

Added response spectrum according to SP 14.13330.2018

Generate Design Spec	trum			×
Design Spectrum :	SP 14.1333	0.2018		~
Design Spectral Re	sponse Acce	leration –		
Soil Category		I	~	
K0 Factor		1.00	~	
K1 Factor		0.12	~	
KPsi Factor		1.30	~	
Accel. in the Base L	.evel	1.00		
Consider NL def	form. of soils	m/sec^2		
Max. Period :	6.00		(Sec)	
	ОК		Cancel	

Dialog box for generating a response spectrum in accordance with SP 14.13330.2018

Add/Mo	odify/Show	Response Spectr	rum Fu	inctions						×
Function Name SP 14.13330.2018				Spectral Data Type ONormalized Accel.		cceleration		y	Oisplacement	
Import File Design Spectrum			Scaling Scale Factor	1		Gravity 9.806 m/sec^2		Graph Options		
	Period (sec)	Spectral Data (g)		O Maximum Value	0 g	1	Damping Ratio		Y-axis log scale	
1 2 3 4 5	0.0000 0.0600 0.1000 0.1200 0.1800	0.0159 0.0302 0.0398 0.0398 0.0398	I	0.0287938 0.0237938 a 0.0287928						
6 7 8 9 10	0.2400 0.3000 0.3600 0.4000 0.4200	0.0398 0.0398 0.0398 0.0398 0.0388		0.0237938 0.0187938 0.0187938						
11 12 13 14	0.4800 0.5400 0.6000 0.6600	0.0363 0.0342 0.0325 0.0310		0.00879385	1.01	2.01 Period	3.01 i (sec)	4.01	5.01 6.0	1
Descrip	tion Soil:	=I, K0=1.00, K1=0	0.12, K	Ψ=1.30, Acce=1.00				ОК	Cancel Appl	y

Added base of materials and profiles for calculation according to Russian code

Ν

Section Data				\times
DB/User Value SRC Con	nbined Tapered	Composi	te	
Section ID 2	I-Section		~	
Name	🔾 User 🛛 🗿	DB	UNI ~	
	Sect. Name	Bui	KS21 KS GB-YB GB-YB05 GB50018-02 Pacific(SI)	
H tw	Get Data from		IS IS808	
142	DB Name	AISC	IS1161 CNS91	
₩B2₩	Sect, Name		SS ICHA TIS 1228(2018)	
	Н		TU 100-180 GOST_8293-89	
z	B1 tw	0	GOST_26020-83 STO_ASCHM_20-93	
	tf1	0	GOST_19425-74 GOST_P_57837-2017	
	B2	0	GOST_8240-97 GOST_8278-83	
	tf2	0	GOST_8239-72 TU 14-2-24-72	
	r1	0	GOST_8509-93 GOST_8510-72	
	r2	0	GOST_30245-2003 GOST_8639-82 GOST_8732-78 GOST_10704-91 GOST_54929-2012	
Offset : Center-Center	Consid	ler Shear [Deformation.	
Change Offset	Consid	der Warpin	g Effect(7th DOF)	
Show Calculation Results		к	Cancel Apply	

Additional sections of rolled steel sections

General Material ID 2		Name	C255	
		Name		-
lasticity Data		Steel		
Type of Design Steel	~	Standard	SP16.2017t.B3(S)	\sim
		DB	DIN(S)	٦
		Product	EN05(S) EN05-PS(S)	
4		Concrete	EN05-SW(S) EN(S)	ī
	•	Standard	EN 10326(S) EN 10149-2(S)	
Type of Material		c	EN10149-3(S)	
O Isotropic	Orthotropic	DB	GOST-SP(S)	
Steel			GOST-SNIP(S) SP16.2017t.B3(S)	
Modulus of Elasticity :	2.1006e+10	kgf/m^2	SP16.2017t.B4(S) SP16.2017t.B5(S)	
Poisson's Ratio :	0.3		BC1:12-ASTM(S)	
	0.0		DOM: 4D DO DU(O)	
Thermal Coefficient :	6.6667e-06	1/[F]	BC1:12-BS EN(S) BC1:12-JIS(S)	
		1/[F] kgf/m^3		
Thermal Coefficient :	6.6667e-06	kgf/m^3	BC1:12-JIS(S) BC1:12-GB(S)	
Thermal Coefficient : Weight Density :	6.6667e-06 7.85e+09	kgf/m^3	BC1:12-JIS(S) BC1:12-GB(S) BC1:12-Class2(S) BC1:12-Class3(S) JIS(S) JIS-Civil(S)	
Thermal Coefficient : Weight Density : Use Mass Density: Concrete	6.6667e-06 7.85e+09	kgf/m^3	BC1:12-JIS(S) BC1:12-GB(S) BC1:12-Class2(S) BC1:12-Class3(S) JIS(S) JIS(S) JIS-Civil(S) Q/CR 9300-18(S) GB 50917-13(S)	
Thermal Coefficient : Weight Density : Use Mass Density: Concrete Modulus of Elasticity :	6.6667e-06 7.85e+09 8.005e+08	kgf/m^3 kgf/m^3/g	BC1:12-JIS(S) BC1:12-GB(S) BC1:12-Class2(S) BC1:12-Class3(S) JIS(S) JIS-Civil(S) Q/CR 9300-18(S) GB 50917-13(S) GB12(S) GB03(S)	
Thermal Coefficient : Weight Density : Use Mass Density:	6.6667e-06 7.85e+09 8.005e+08 0.0000e+00	kgf/m^3 kgf/m^3/g	BC1:12-JIS(S) BC1:12-GB(S) BC1:12-Class2(S) BC1:12-Class3(S) JIS(S) JIS(S) JIS-Civil(S) Q/CR 9300-18(S) GB 50917-13(S) GB12(S) GB03(S) GB(S) GB50018-02(S)	
Thermal Coefficient : Weight Density : Use Mass Density: Concrete Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient :	6.6667e-06 7.85e+09 8.005e+08 0.0000e+00 0	kgf/m^3 kgf/m^3/g kgf/m^2	BC1:12-JIS(S) BC1:12-GB(S) BC1:12-Class2(S) BC1:12-Class3(S) JIS(S) JIS-Civil(S) Q/CR 9300-18(S) GB 50917-13(S) GB 12(S) GB03(S) GB(S)	
Thermal Coefficient : Weight Density : Use Mass Density: Concrete Modulus of Elasticity : Poisson's Ratio : Thermal Coefficient :	6.6667e-06 7.85e+09 8.005e+08 0.0000e+00 0 0.0000e+00	kgf/m^3 kgf/m^3/g kgf/m^2 1/[F]	BC1:12-JIS(S) BC1:12-GB(S) BC1:12-Class2(S) BC1:12-Class3(S) JIS(S) JIS-Civil(S) Q/CR 9300-18(S) GB 50917-13(S) GB 12(S) GB 03(S) GB(S) GB(S) GB(S) GB(S) TB 10092-17(S)	

Materials of steel elements according to table 3,4,5 SP 16.13330.2017

General				
Material ID 2		Name	B35	
Elasticity Data				
Type of Design Cor	ncrete V	Steel		
		Standard		
		DB		\sim
		Product		~
		Concrete		
		Concrete Standard	SP63.2018(RC)	~
Type of Material		Standard	SP63.2018(RC)	~
	Orthotropic	Standard		~
) Orthotropic	Standard C	ode <u>B35</u> B35	~
 Isotropic 	Orthotropic	Standard C	ode B35	~
Isotropic (Standard C DB	B35 B35 B40 B45 B50	~
Steel Modulus of Elasticity :	0.0000e+00	Standard C DB	ode <u>335</u> <u>835</u> 840 845	~

Concrete Mat	terial Selection						
Code : SP6	63.2018(RC)	~		Grade	e :	B20	\sim
Specified Com	pressive Streng	gth (fc fck)			:	1172673.64493	kgf/m^2
Light Weigl	ht Concrete Fa	ctor (Lambda)	:			1]
Rebar Selection	on						
Code : SP	63.2018(RC)	\sim					
Grade of Main	Rebar :		\sim	Fy	:	0	kgf/m^2
Grade of Sub-	Rebar :	A240 A240 sw		Fys	:	0	kgf/m^2
		A400 A400_sw A500				Modify	Close

Materials of reinforced concrete structures according to SP 63.13330.2018

> ▲ Go to Index - B10 -

Thanks