
Release Note

Release Date: June. 2024

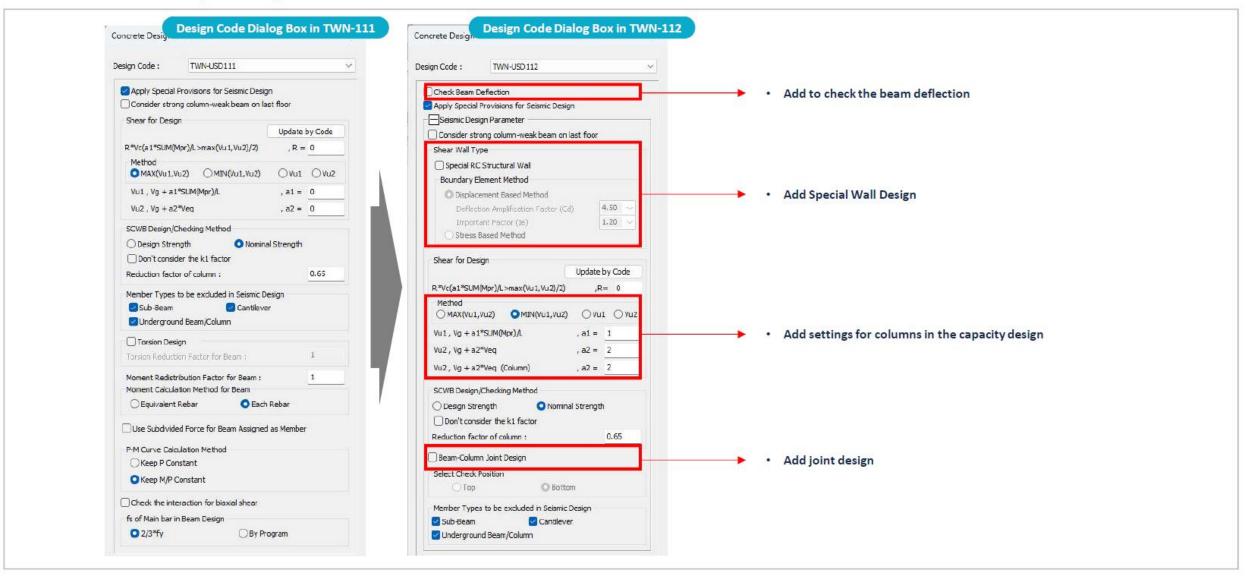
Product Ver.: midas Gen 2024 (v2.1)

Design System of General Structures

INDEX

midas Gen

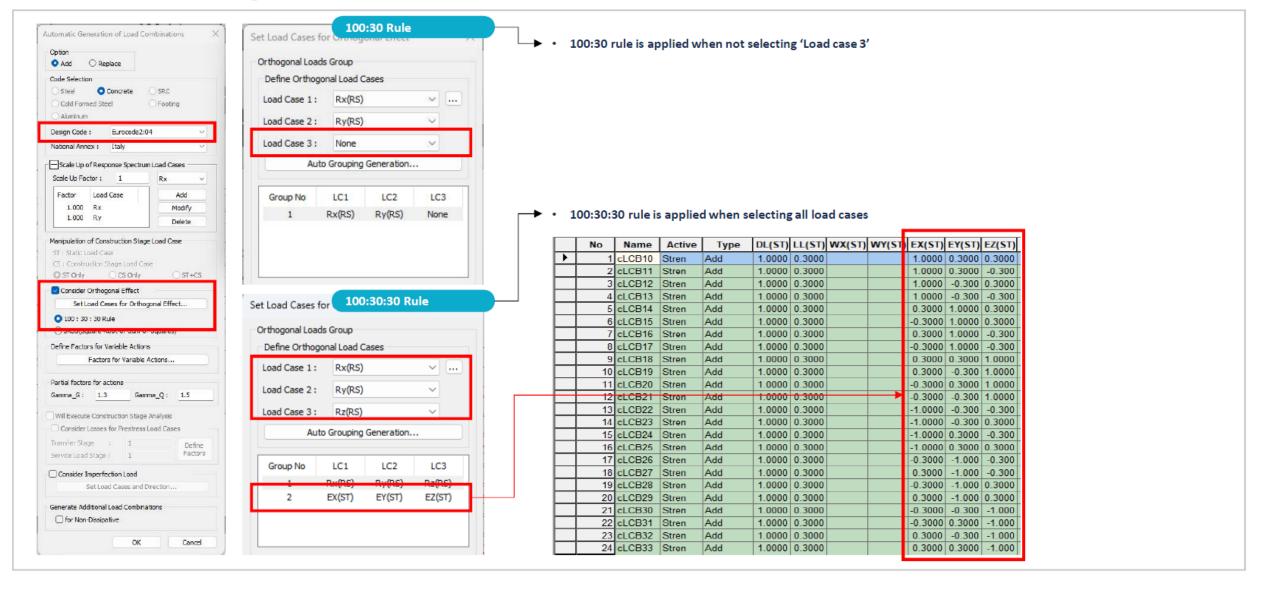
- Added TWN-USD 112 (Taiwan)
- Improved Steel Design, Irregularity Check and other features according to IS Code (India)
- Added 100:30:30 Rule according to Eurocode 8
- Added Detail Report for Cyclic Shear Resistance Check
- Improved Construction Stage Analysis Control Data (Setting of Load Case)
- Added Cold Formed Material of TIS 1228-2018 (Thailand)
- Added Cold Formed Section of TIS 1228-2018 (Thailand)
- Added Static Seismic Load and Response Spectrum Function according to EC-8(2004) Malaysia N.A.
- ETC
 - 1. Improved Rebar Size Dialog box in Meshed Design
 - 2. Improved Shear Span in RC members under Eurocode 8 (Pushover Hinge)
 - 3. Improved Wall Design Force as per EC8


Design+

- Added Member Design Module for IS :456-2000. (Column, Basement Wall, Shear Wall Module)
- Improved Link Option
- Added Eurocode 2 in Batch Design
- Improved Batch Wall Design
- Improved Anchor Bolt Design in Base Plate
- Improved Start Page

midas Gen

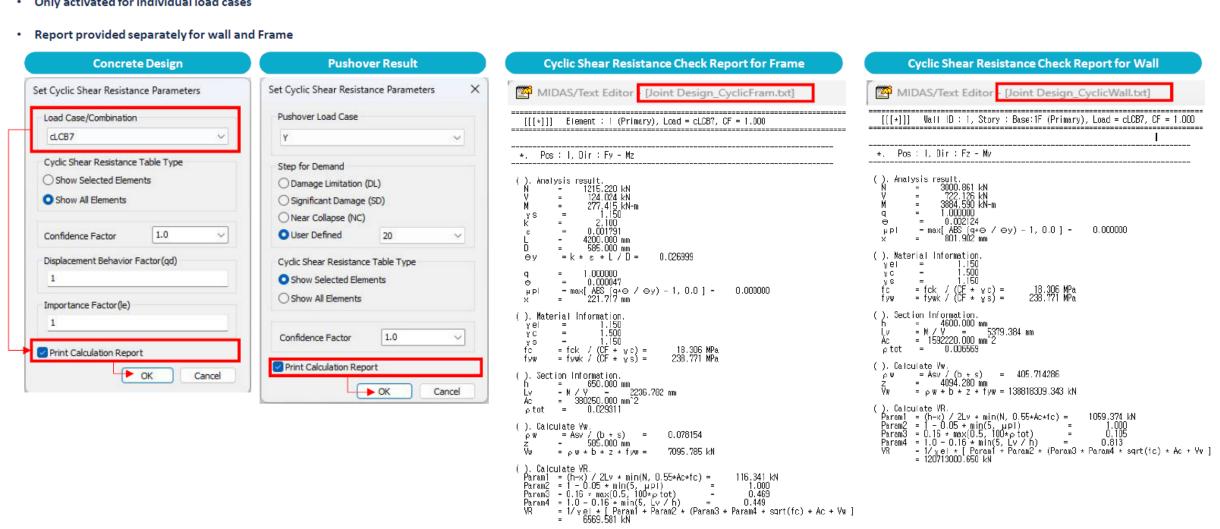
Add TWN-USD 112 (Taiwan)


Improved Steel Design, Irregularity Check & Other Features according to IS Code (India)

The items below have been updated. If you want to know more details, please click on [Here]

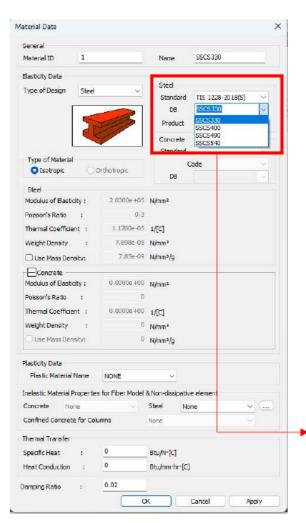
- Added Seismic Provisions for Steel Design as per IS: 18168 -2023
 - 1. Additional Seismic Load Combination as per IS: 18168: 2023
 - 2. Column to beam strength ratio as per IS: 18168 -2023
 - 3. Seismic Beam Design for SMRF as per IS: 18168-2023
 - 4. Seismic Beam Design & Brace Design for SCBF as per IS: 18168-2023
- Irregularity Check according to IS: 1893 -2016
 - 1. Torsional Irregularity & Weight Irregularity
 - 2. Stiffness Irregularity
 - 3. Capacity Irregularity
 - 4. Irregular modes of oscillation
- Irregularity Check according to IS: 16700 -2023
 - 1. Stiffness Irregularity & Capacity Irregularity
 - 2. Natural modes of vibration
- Approximate Time period of building according to IS: 16700-2023
- Lateral Story Drift Check according to IS: 16700 2023
- Stability Coefficient Check according to IS: 16700 2023

100:30:30 Rule according to Eurocode 8



Detail Report for Cyclic Shear Resistance Check

Only activated for individual load cases


Improvement for Load Case Setting in Construction Stage Analysis Control Data

 Separate analysis results can be obtained for the load case specified by the user. (Previously, only Live Load could be separated from Dead Load.) Construction Stage Analysis Control Data Reacti... Defor... Forces Stresses Strains Plate Forces/Moments v ... Final Stage Other Stage O Last Stage FASE1 Load Cases/Combinations Analysis Option CS: Summation CS. Dood Lood Linear Analysis Nonlinear Analysis Control Analysis type CS: test01 O Independent Stage Accumulative Stage CS: test02 Indude Time Dependent Effect Time Dependent Effect Control CS: Shrinkage S: Summation Cable-Pretension Force Control Current UCS Print UCS Axis Internal Force O Add O External Force Replace O Element Avg. Nodal Composite Section Avg. Nodal Active Only Calculate Output of Each Part Load Cases to be Distinguished from Dead Load for C.S. Output Components ○Fxx ○ Fxy Add Load Case Name Case 1 Case2 ○ FMax Modify test01 Q ○ Mxy 2 test02 G2_CS Delete ○ MMax ○ VMax Wood Armer Moment ○ Mvector ☐ Initial Tangent Displacement for Erected Structures Negative Negative Positive Group Solaio Vector Scale Factor 1.000000 Length Remove Construction Stage Analysis Control Data Cancel Thickness

Add Cold Formed Material of TIS 1228-2018 (Thailand)

· Cold-formed section design is supported for only AISI-CF08.



• When applied to a cross-section with a thickness exceeding 6mm, the strength value is applied as 0.

	DB	E s Modulus of Elasticity	v Possion's Ratio	α Thermal Coefficient	W Weight Density	Fu Tensile Strength	Fy Yield Strength	Limit for Thickness
•	SSCS330					330 Mpa	205 Mpa	
	SSCS400	202 000 Mpc	0.3	11.7/22	7 950 kg/m³	400 Mpa	245 Mpa	< Gram
	SSCS490	203,000 Mpa	0.3	11.7 µm/m	7,850 kg/m ³	490 Mpa	285 Mpa	≤ 6mm
	SSCS540					540 Mpa	400 Mpa	

Add Cold Formed Section of TIS 1228-2018 (Thailand)

Add Static Seismic Load and Response Spectrum Function according to EC-8(2004) Malaysia N.A.

Response Spectrum Function Add/Modify/Show Response Spectrum Functions Generate Design Spectrum Eurocode-B(2004) Malaysia Import tile Design Spectrum O Scale Factor X-axis log scale Spectrum Type : Horizontal Design Spectrum V Period Spectral Data (sec) (q) ○ Maximum Value I Ground Type : Region : Peninsula 0.34775 0.0500 0.3360 Spectrum Parameters 0.0600 0.3360 0.297753 ○ Type2 O Type I 0.1200 0.247753 0.1800 0.3360 Sol Factor (S) Tb 0.2400 0.3360 0.197753 0.05 0.3 2.2 0.3000 8 0.3600 9 0.4200 10 0.4800 11 0.5400 0.147753 0.2800 Ref. Peak Ground Acc. (AgR) 0.08 0.2400 0.097753 Importance Factor (1): 1.0 ~ 0.2100 0.007753 0.1867 Behavior Factor (q): 1.5 0.1680 0.6000 Lower Bound Factor (b): 0.2 3.01 4.01 5.01 6.00 0.6600 0.1527 Max. Period : (Sec) OK III OK Cancel Apply

Malaysia values for nationally determined parameters described in MS EN 1998-1:2015

• Parameter for Horizontal Response Spectrum

In the absence of deep soil effects, and for site specific information Malaysia spectra. Use the table below or refer to Annex C.

Peninsular:

Ground type	S	T _B (s)	Tc (s)	TD (S)
Α	1	0.05	0.2	2.2
В	1.4	0.05	0.3	2.2
С	1.15	0.05	0.5	2.2
D	1.35	0.3	0.8	2.2
E	1.4	0.15	0.5	2.2

Sabah:

Ground type	S	TB (S)	Tc (s)	<i>T</i> _D (s)
A	1	0.1	0.4	2
В	1.4	0.15	0.4	2
C	1.35	0.15	0.6	2
D	1.35	0.2	0.8	2
E	1.4	0.15	0.5	2

Sarawak:

Ground	S	T_B	Tc	T_D
type		(S)	(S)	(S)
Α	1	0.05	0.5	1.2
В	1.2	0.15	0.5	1.2
С	1.3	0.2	0.5	1.2
D	1.35	0.2	0.5	1.2
E	1.4	0.15	0.5	1.2

Vertical Parameter for Vertical Response Spectrum

a _{vg} /a _g	T _B (S)	T _C (s)	T _D (s)
0.70	0.05	0.15	1.0

Or alternatively, for Malaysia spectra, site natural period (T_S) calculation is required for soil deposit exceeding 30 m in depth (deep geology). Use the table below or refer to Annexes A and D.

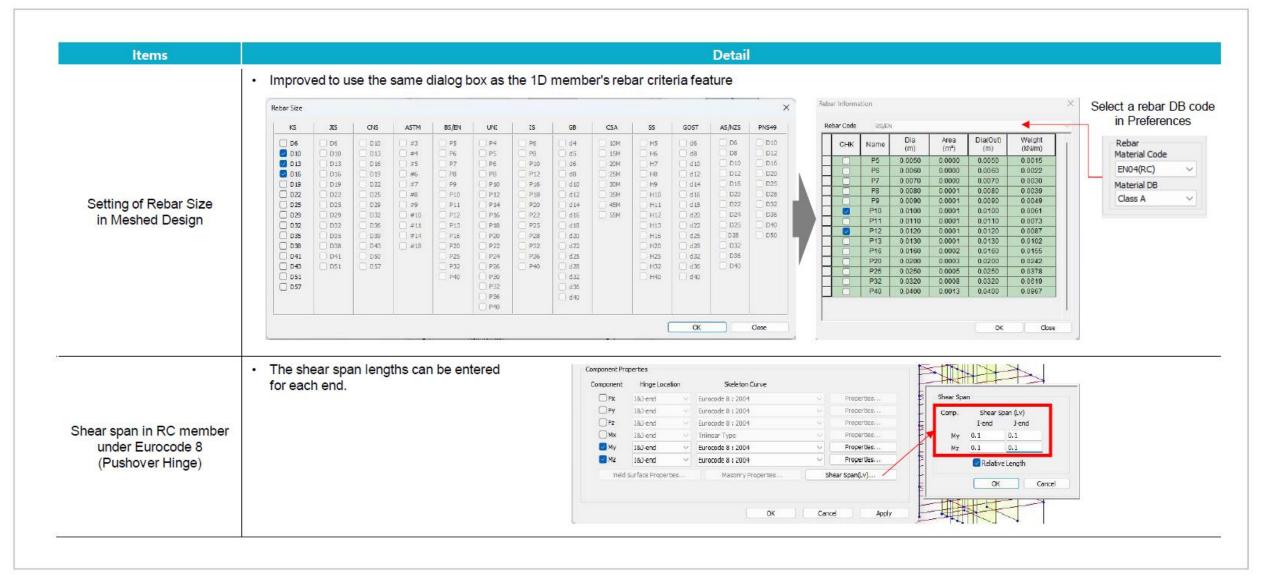
Peninsular:

Ground type	S	T _B (S)	T _C (S)	T _D (S)
Α	1	0.1	0.3	2.0
В	1.5	0.1	0.3	1.5
С	1.8	0.1	0.6	1.0
D	1.35	0.1	0.8	1.5
E	1.8	0.1	0.6	2.0

Sabah:

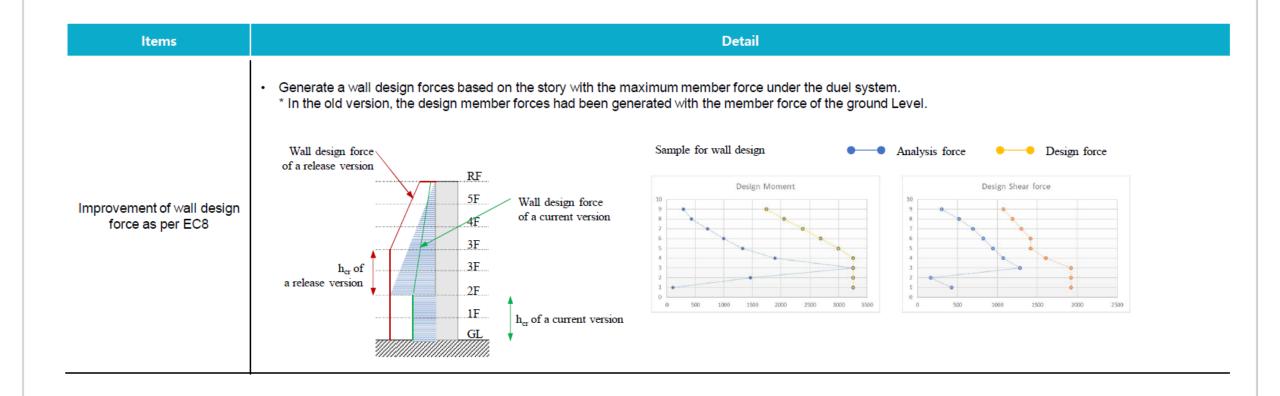
Ground type	S	TB (S)	Tc (s)	To (s)
Α	1	0.1	0.3	4.0
В	1.5	0.1	0.3	4.0
С	1.8	0.1	0.6	1.0
D	1.35	0.1	0.8	1.5
E	1.8	0.1	0.6	2.0

Sarawak:

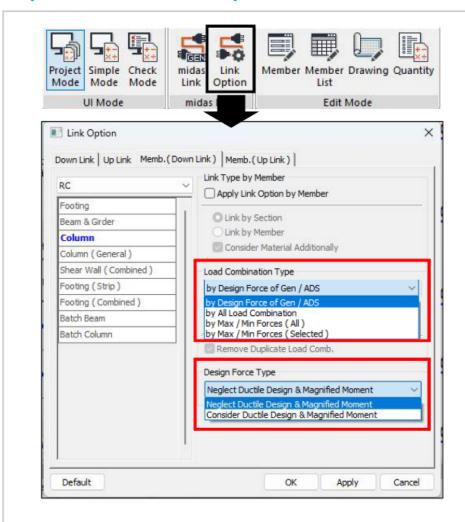

Ground type	S	<i>T_B</i> (s)	T _C (s)	<i>T_D</i> (s)
Α	1	0.1	0.3	1.25
В	1.5	0.1	0.3	1.25
C	1.8	0.1	0.6	1.0
D	1.35	0.1	0.8	1.5
E	1.8	0.1	0.6	2.0

Importance factor yl

Class II : $\gamma_1 = 0.8$ Class III : $\gamma_1 = 1.2$ Class IV : $\gamma_1 = 1.5$


ETC

ETC



midas Design+

Improvement of Link Option

"Memb.(Down Link) " > Load Combination Type

[Column & Column(General)& Shear Wall & Footing]

- By Design force of Gen / ADS: Import the design forces used in Gen's design.
- By All Load Combination: Results for all load combinations are imported individually.
- By Max/Min Forces (All): Import only the Max. and Min. values among member forces from all load combinations.
- By Max/Min Forces (Selected): Import only the design forces for the selected design components.

[All Batch Design]

- By Design force of Gen / ADS: Import the design forces used in Gen's design.

"Memb.(Down Link) " > Design Force Type

[Column & Column(General) & Shear Wall &Shear Wall (Combined) & Batch Column & Batch Wall]

- Neglect Ductile Design & Magnified Moment
- : Design forces by strong column-weak beam are not considered
- : Design forces by 2nd Order Effect (by moment magnification method) are not considered.
- Consider Ductile Design & Magnified Moment
- : Design forces by strong column-weak beam are considered
- : Design forces by 2nd Order Effect (by moment magnification method) are considered.
- * Moment magnification method is not reflected: "2nd Order Effect" option is checked off when importing from Gen.

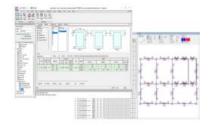
[Footing & Footing(Combined)]

- Design force of Column: Use the Design forces of column.
- Reaction of Support : Use the forces of reaction result.

190.5 밀리미터

Add Eurocode 2 in Batch Design

- There are many inconveniences when performing design in Gen. For example, when a section needs to be added when grouping members or when the cross section needs to be increased according to design results, analysis and design should be performed again. Since these cases must be performed repeatedly, a lot of time and effort are required depending on the magnitude of the building.
- Batch Design is a design feature to provide convenience for these repetitive parts in Gen, and the procedure is as follows.


[Gen] Modeling & Analysis & Design

- Create a model with simple section in G en
- Perform an analysis
- Set a design condition and perform a de sign.

[Design+] Import Design Data of Gen

- Section Name, Material, Section Size, R ebar.
- · Design force.
- · Design Setting (cover, design type).
- Design Condition (Seismic design).

[Design+] Set Story & Design Option

- Set Story Group
- Set Smart Design Option
 (Design as per EN or IS code is not supported)

[Design+] Member Grouping & Design

- Auto-Design by "Smart Design".
- Do the grouping work for beam according to Design force
- Auto-Design of member list drawing and quantity.

[Gen] Export Design data to Gen

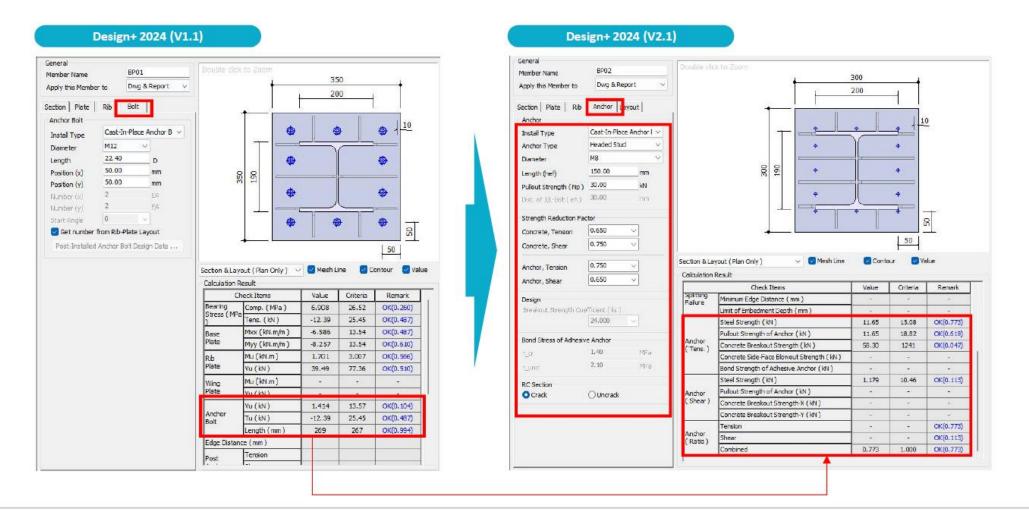
- Create Sections by Group Name, Materi als, Rebar information
- · Run 'Code Check' in Gen

- The purpose of Batch Design is to quickly create and link the material, cross-section, and rebar information to Gen for analysis and design in Gen. Please use this product with the understanding that design results may differ slightly due to internal differences in design settings for Gen and Design+.
- · Design as per EN or IS code is not supported.

❖ Batch Design Guide : [Download]

Improved Batch Wall Design

Improved Design Module according to IS Code (India)


The items below have been updated. If you want to know more details, please click on [Here]

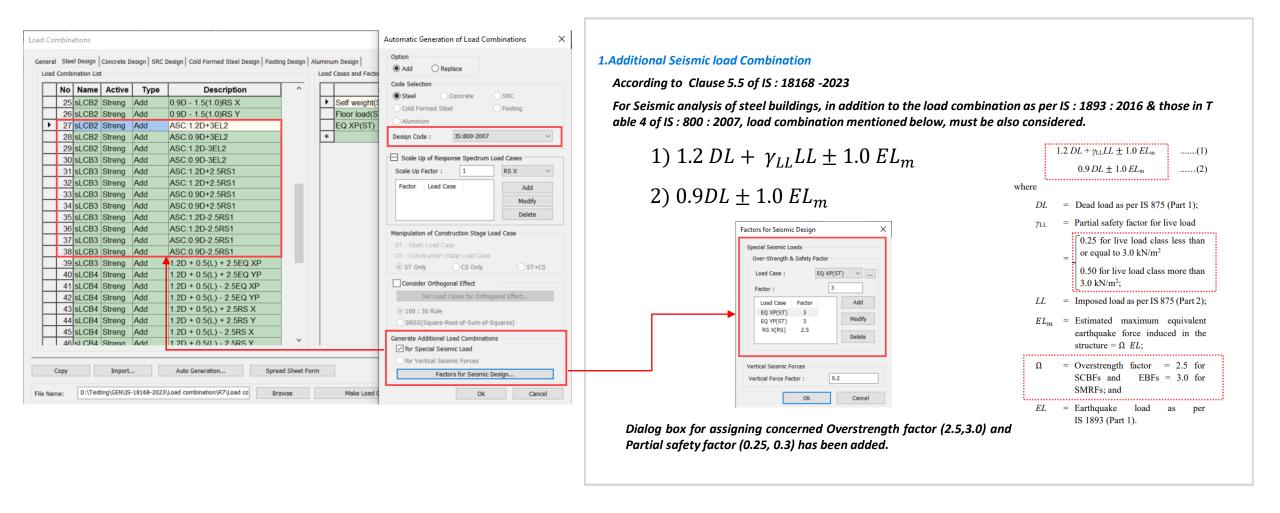
- Added Design Module for IS :456-2000.
 - 1. Column Module
 - 2. Basement Wall Module
 - 3. Shear Wall Module

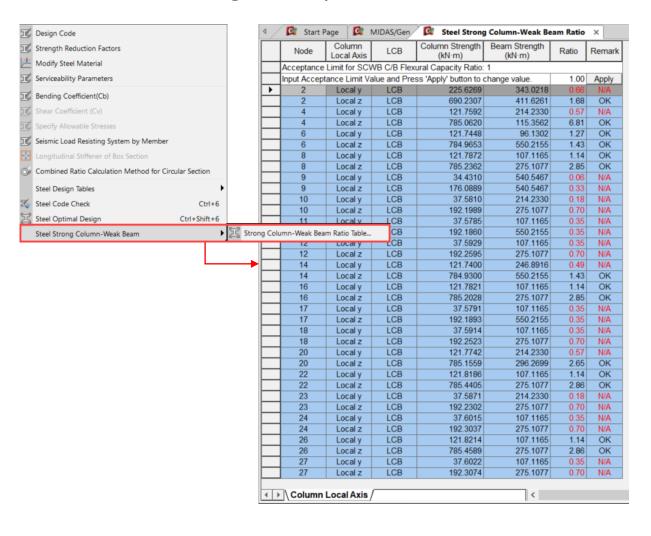
Improvement of Anchor Bolt Design in Base Plate

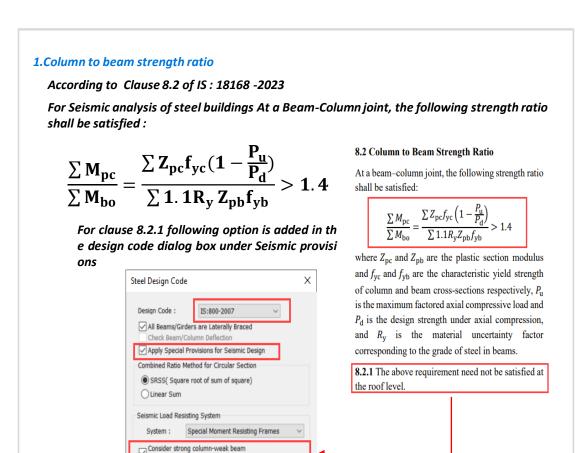
•The anchor design of the base plate was modified to be designed according to the design process of "RC>Anchor Bolt Design".

Improvement of Start Page

· Supports recent project list Design+ 2024 (V1.1) Design+ 2024 (V2.1) Start Page Member Member List Drawing Quantity MIDAS Account MIDAS EN © Contactus | A MIDAS Account Welcome to MIDAS If you are If you are new to Recent a licensed user MIDAS solution test_column design 2024-03-2012:55:28 New Project C\Users\yiseo\Downloads\test_column design.mdpb Global Technical Support Center Geotechnical Building Bridge 2024-03-1216:21:15 2024-02-1311:29:43 C'\Users'\yiseo\Downloads\EC_batch design_0:1.mdpb C\Users\viseo\Downloads\test_story.data.mdpb Mechanical NEWS test anchor Issue Anchor 2024-01-3116:08:49 CWsers/wisso/Downloads/111/11.mdpb 2024-01-3111:50:21 C\Users\viseo\Downloads\test_anchor issue_Anchor.mdpb Gen 2021 (v3.1) Installation available. (Sep.02,2021)[6] test_240104 Civil 2022 (v1.1) Installer available (Oct. 08, 2021) 2024-01-04 12:36:53 2023-12-1116:08:23 C:\Users\viseo\Downloads\test_start.mdpb C:\Users\viseo\Downloads\test_240104.mdpb nGen 2022(v1.1) installer available (Aug. 09, 2021) test_slab_IS code_01 Batch design manual D106_release work002_design+18atch design manual/18atch design 2023-12-0513:44.22 2023-11-17 16:26:37 C'\Users'yiseo\Downloads\test_slab_lis code_0t1.mdpb test_slab_IS code 2023-11-09 16:50:59 D106_release work100_Gen12023년도 개념합복(23_D+_botch.de... 2023-10-12 16:21:31 : C'\Users\yiseo\Downloads\test_slab_iS code.mdpb D\06_release work\02_design+\2015_combined footing\test02... 2023-10-11 14:44-19

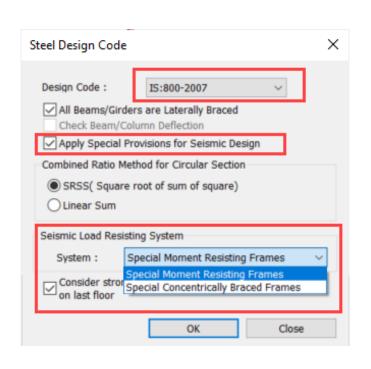

Thank you

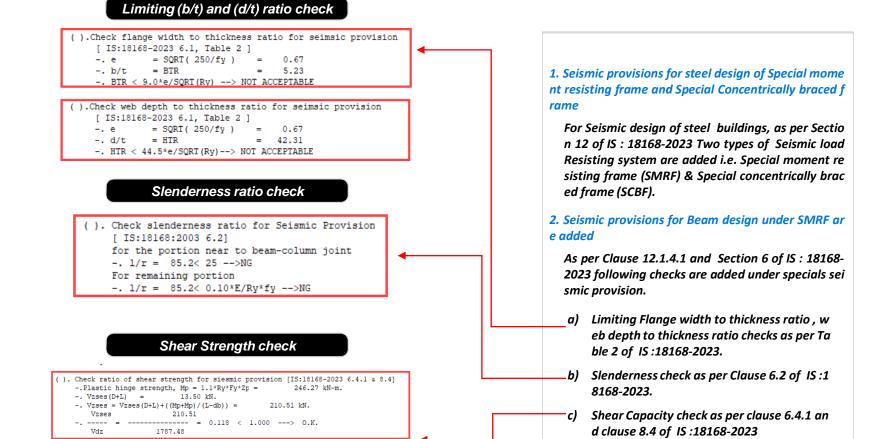

Improvement of IS code in midas Gen


- Added Seismic Provisions for Steel Design as per IS: 18168 -2023
 - 1. Additional Seismic Load Combination as per IS: 18168: 2023
 - 2. Column to beam strength ratio as per IS: 18168 -2023
 - 3. Seismic Beam Design for SMRF as per IS: 18168-2023
 - 4. Seismic Beam Design & Brace Design for SCBF as per IS: 18168-2023
- Irregularity Check according to IS: 1893 -2016
 - 1. Torsional Irregularity & Weight Irregularity
 - 2. Stiffness Irregularity
 - 3. Capacity Irregularity
 - 4. Irregular modes of oscillation
- Irregularity Check according to IS: 16700 -2023
 - 1. Stiffness Irregularity & Capacity Irregularity
 - 2. Natural modes of vibration
- Added Column Module for IS:456-2000.
- Added Basement Wall Module for IS :456-2000.
- Added Shear Wall Module for IS :456-2000

1. Additional Seismic Load Combination as per IS: 18168: 2023

2. Column to beam strength ratio as per IS: 18168 -2023





Close

on last floor

3. Seismic Beam Design for SMRF as per IS: 18168-2023

(). Check ratio of shear strength for siesmic provision [IS:18168-2023 6.4.1 & 8.4]

-.Plastic hinge strength, Mp = 1.1*Ry*Fy*Zp =

-. Vzses = Vzses(D+L)+((Mp+Mp)/(L-db)) =

23.38 kN.

Vzses 1410.80 -. ---- = ----- = 0.958 < 1.000 ---> O.K.

-. Vzses(D+L) =

4. Seismic Beam Design & Brace Design for SCBF as per IS: 18168-2023

Limiting (b/t) and (d/t) ratio check

```
( ).Check flange width to thickness ratio for seimsic provision
      [ IS:18168-2023 6.1, Table 2 ]
      -. e = SQRT( 250/fy ) = 0.91
      -. b/t = BTR = 5.65
      -. BTR < 11.3*e/SQRT(Ry) --> O.K.
```

```
( ).Check web depth to thickness ratio for seimsic provision
[ IS:18168-2023 6.1, Table 2 ]
-. e = SQRT( 250/fy ) = 0.91
-. d/t = HTR = 32.96
-. HTR < 44.4*e/SQRT(Ry)--> 0.K.
```

Slenderness ratio check

```
( ). Check slenderness ratio for Seismic Provision
[ IS:18168:2003 6.2]
-. 1/r = 149.4< 160 -->0.K.
```

1. Seismic provisions for Beam design under SCBF are added

As per Clause 12.2.4.4 and Section 6 of IS: 18168-2023 following checks are added under special s seismic provision.

- a) Limiting Flange width to thickness ratio, web depth to thickness ratio checks as per Table 2 of IS:18168-2023.
- b) Slenderness check as per Clause 6.2 of IS:18168-2023.
- c) Shear Capacity check as per clause 6.4.1 and clause 8.4 of IS :1816 8-2023
- 2. Seismic provisions for Brace design under SCBF are added

As per Clause 12.2.4.2 and Section 10 of IS: 18168-2023 following checks are added under specials seismic provision.

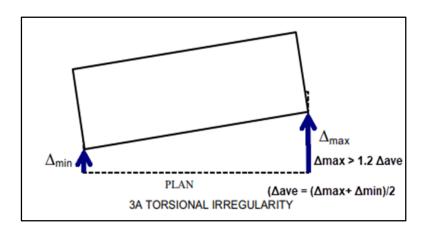
- a) Limiting Flange width to thickness ratio , web depth to thickness ratio checks as per Table 2 of IS :18168-2023.
- b) Slenderness check as per Clause 10.2 of IS :18168-2023.

Irregularity Check according to IS: 1893-2016

1. Torsional Irregularity & Weight Irregularity

Results > Results Tables > Story> Irregularity check parameter > IS: 1893-2016 > Torsional Irregularity / Weight Irregularity check

Torsional Irregularity Chec Average Value of Extreme Points Maximum Value Load Level Height Story 1.2*Story Drift Remark 1.4*Story Drift Story Drift Case (m) Node (m) 40.50 3.15 0.0016 0.0014 353 0.0012 Regular EXP 11F 37.35 3.15 0.0026 0.0022 321 0.0018 Regula 10F 34.20 3.15 0.0035 0.0030 0.0025 Regular 9F 3.15 EXP 31.05 0.0043 0.0037 257 0.0031 Regula EXP 8F 27.90 3.15 0.0050 0.0043 0.0036 Regula 24.75 3.15 0.0055 0.0047 193 0.0040 Regula 6F 3.15 21.60 0.0059 0.0051 0.0042 Regula 5F 18.45 3.15 0.0062 0.0053 0.0044 Regula 4F 15.30 3.15 0.0045 Regula 0.0063 0.0054 3F 3.15 0.0045 Regular 12.15 0.0063 0.0054 2F 9.00 3.15 0.0059 0.0050 0.0042 Regular 5.00 4.00 0.0047 0.0040 0.0033 Regular Torsional Irregularity(X) ∫ Torsional Irregularity(Y)


Weight Irregularity Ch

4 / [Start Page	MIDAS/0	Gen 🔯 Result	·[Weight Irregula	rity Check] ×			
	Load Case	Story	Level (m)	Story Height (m)	Story Weight (kN)	1.5*Lower Story Weight (kN)	Story Weight Ratio	Remark
-	DL	Roof	43.65	0.00	11818.865	20758.417	0.000	Regular
	DL	12F	40.50	3.15	13838.944	20758.417	0.667	Regular
	DL	11F	37.35	3.15	13838.944	20758.417	0.667	Regular
	DL	10F	34.20	3.15	13838.944	20758.417	0.667	Regular
	DL	9F	31.05	3.15	13838.944	20758.417	0.667	Regular
	DL	8F	27.90	3.15	13838.944	20758.417	0.667	Regular
	DL	7F	24.75	3.15	13838.944	20758.417	0.667	Regular
	DL	6F	21.60	3.15	13838.944	20758.417	0.667	Regular
	DL	5F	18.45	3.15	13838.944	20758.417	0.667	Regular
	DL	4F	15.30	3.15	13838.944	20758.417	0.667	Regular
	DL	3F	12.15	3.15	13838.944	21059.693	0.657	Regular
	DL	2F	9.00	3.15	14039.795	0.000	0.000	Regular
	DL	1F	5.00	4.00	945.180	0.000	0.000	Regular
4)	Weight Irregu	ılarity(X) (We	ight Irregularity(()/		<		

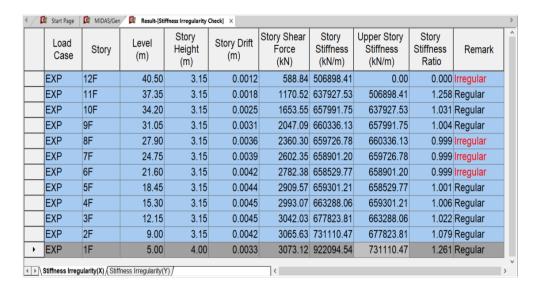
1.Torsional Irregularity Check

According to Table 5-i) of Clause 7.1 of IS: 1893 Part-1-2016,

"Story Drift of Maximum Value" divided by "Story Drift of Average Value of Extreme Points." If it exceeds 1.2 but less than 1.4, "Irregular-Building Config" is printed, If it exceeds 1.4 "Irregular-Structure Config" is printed. If it is less than 1.2, 'Regular' is printed.

2. Weight Irregularity Check

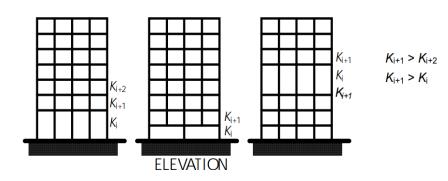
According to Table 6-ii) of Clause 7.1 of IS: 1893 Part-1-2016


"Story Weight Ratio", Story Weight divided by 1.5*Story Weight of adjacent lower story, If it exceeds 1.0, "Irregular" is printed. If it is less than 1.0, 'Regular' is printed.

Irregularity Check according to IS: 1893 -2016

2. Stiffness Irregularity

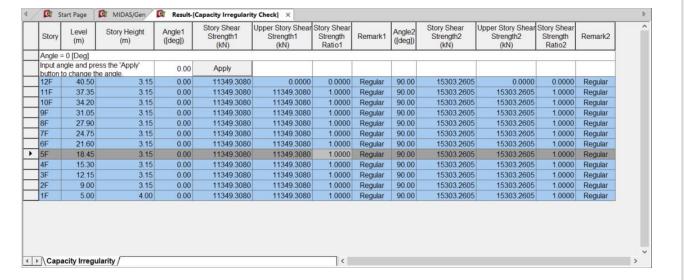
• Results > Results Tables > Story> Irregularity check parameter > IS: 1893-2016 > Stiffness Irregularity check


Stiffness Irregularity Chec

3. Stiffness Irregularity(Soft Story) Check

According to Table 6-i) of Clause 7.1 of IS: 1893 Part-1 -2016

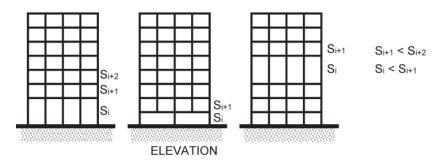
When the story stiffness of a particular story is greater than the stiffness of the story below, then the story will be defined as irregular. i.e. if the ratio of Story stiffness divided by the upper story stiffness, IF exceeds 1 "Regular" is printed, If less than 1 "Irregular" is printed in remarks


4A STIFFNESS IRREGULARITY (SOFT STOREY)

Irregularity Check according to IS: 1893 -2016

3. Capacity Irregularity

Results > Results Tables > Story> Irregularity check parameter > IS: 1893-2016 > Capacity Irregularity check


Capacity Irregularity Ch

4. Capacity Irregularity (Weak Story) check

According to Table 6-v) of Clause 7.1 of IS: 1893 Part-1-2016

If the ratio of the lateral strength of a story to lateral strength of the story above exceeds 1.0, "Re gular" is printed. If it is less than 1.0, 'Irregular' is printed.

4E STRENGTH IRREGULARITY (WEAK STOREY)

Irregularity Check according to IS: 1893 -2016

4. Irregular modes of oscillation

Results > Results Tables > Story> Irregularity check parameter > IS: 1893-2016 > Mode shapes irregularity check

Irregular modes of oscillation c

Imperfection

4. Irregular modes of oscillation check

According to Table 6-vii) of Clause 7.1 of IS: 1893 Part-1-2016

A building is said to be irregular if it satisfies both condition mentioned below:-

- 1) the first three modes contribute less than 65 percent mass participation factor in each principal plan direction.
- 2) the fundamental lateral natural periods of the building in the two principal plan directions are c loser to each other by 10 percent of the larger value.

Hence for the 1st condition If summation of modal mass participation is less then 65 percent "Irreg ular" is printed, if greater than 65 percent "Regular" is printed.

For 2^{nd} condition if the ratio T_{min} to 0.9 * T_{max} exceeds 1 "Irregular" is printed, If less than 1 "Regular" is printed.

Here T_{min} = minimum (T_x and T_y) and T_{max} = maximum (T_x and T_y), T_x and T_y are fundamental natural period of the building in respective principal plan direction.

For final status, if both condition are "Irregular", "Irregular" is printed, if both condition are "Regular", "Regular" is printed, if one of the condition is "Regular" and other one is "Irregular", "Part ial Regular" is printed.

Irregularity Check according to IS: 16700 -2023

1. Stiffness Irregularity & Capacity Irregularity

• Results > Results Tables > Story> Irregularity check parameter > IS: 16700-2023 > Stiffness Irregularity check / Capacity Irregularity check

Stiffness Irregularity Chec

	Load Case	Story	Level (m)	Story Height (m)	Story Drift (m)	Story Shear Force (kN)	Story Stiffness (kN/m)	Upper Story Stiffness (kN/m)	Story Stiffness Ratio	Remark
	EX	13F	34.10	2.37	-0.0001	237.93	3051251.0	0.00	0.000	Irregular
	EX	12F	32.80	1.30	0.0003	299.56	1076140.7	-3051251.07	0.353	Irregular
	EX	11F	30.00	2.80	0.0007	527.39	724971.58	1076140.74	0.674	Irregular
	EX	10F	27.20	2.80	0.0007	858.20	1161068.0	724971.58	1.602	Regular
	EX	9F	24.40	2.80	0.0007	1158.13	1553532.5	1161068.07	1.338	Regular
	EX	8F	21.60	2.80	0.0007	1428.56	1915197.4	1553532.51	1.233	Regular
	EX	7F	18.80	2.80	0.0007	1668.01	2255651.5	1915197.43	1.178	Regular
	EX	6F	16.00	2.80	0.0007	1886.17	2597632.5	2255651.59	1.152	Regular
	EX	5F	13.20	2.80	0.0007	2076.23	2944598.8	2597632.50	1.134	Regular
	EX	4F	10.40	2.80	0.0007	2233.21	3307545.7	2944598.80	1.123	Regular
	EX	3F	7.60	2.80	0.0006	2356.89	3708006.5	3307545.70	1.121	Regular
٠	EX	2F	4.50	3.10	0.0047	2450.48	518907.56	3708006.57	0.140	Irregular
	EX	1F	0.00	4.50	0.0133	2496.55	188326.13	518907.56	0.363	Irregular
	EX	B1	-3.50	3.50	0.0078	2496.55	322089.17	188326.13	1.710	Regular
	EX	B2	-4.50	1.00	0.0006	2496.55	3918566.2	322089.17	12.166	Regular

Capacity Irregularity Check

	Story	Level (m)	Story Height (m)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark2
	Angle = 0	[Deg]											
	Input angi		the 'Apply' button to	0.00	Apply								
٠	13F	34.10	2.37	0.00	1225.7204	0.0000	0.0000	Regular	90.00	5494.3922	0.0000	0.0000	Regular
	12F	32.80	1.30	0.00	3252.2616	1225.7204	2.6533	Regular	90.00	0.0000	5494.3922	0.0000	Irregular
	11F	30.00	2.80	0.00	24385.1941	3252 2616	7.4979	Regular	90.00	0.0000	0.0000	0.0000	Irregular
	10F	27.20	2.80	0.00	24385.1941	24385.1941	1.0000	Regular	90.00	0.0000	0.0000	0.0000	Irregular
	9F	24.40	2.80	0.00	24385.1941	24385.1941	1.0000	Regular	90.00	0.0000	0.0000	0.0000	Irregular
	8F	21.60	2.80	0.00	24401.1017	24385.1941	1.0007	Regular	90.00	0.0000	0.0000	0.0000	Irregular
	7F	18.80	2.80	0.00	24401.1017	24401.1017	1.0000	Regular	90.00	0.0000	0.0000	0.0000	Irregular
	6F	16.00	2.80	0.00	26422.2531	24401.1017	1.0828	Regular	90.00	2021.1514	0.0000	0.0000	Irregular
	5F	13.20	2.80	0.00	26526.9082	26422.2531	1.0040	Regular	90.00	2125.8065	2021.1514	1.0518	Regular
	4F	10.40	2.80	0.00	26526.9082	26526.9082	1.0000	Regular	90.00	2125.8065	2125.8065	1.0000	Regular
	3F	7.60	2.80	0.00	26526.9082	26526.9082	1.0000	Regular	90.00	2125.8065	2125.8065	1.0000	Regular
	2F	4.50	3.10	0.00	9275.0574	26526.9082	0.3496	Irregular	90.00	9275.0574	2125.8065	4.3631	Regular
	1F	0.00	4.50	0.00	10629.0326	9275.0574	1.1460	Regular	90.00	10629.0326	9275.0574	1.1460	Regular
	B1	-3.50	3.50	0.00	11265.6844	10629.0326	1.0599	Regular	90.00	11265.6844	10629.0326	1.0599	Regular
	B2	-4.50	1.00	0.00	11265.6844	11265.6844	1.0000	Regular	90.00	11265.6844	11265.6844	1.0000	Regular

1.Stiffness Irregularity Check

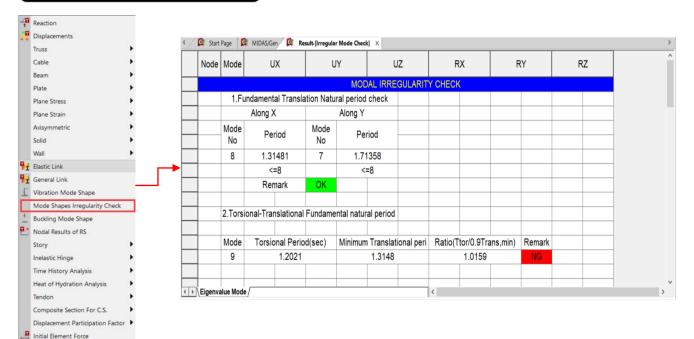
According to Clause 5.3 a) of IS: 16700-2023,

Lateral stiffness of any story shall not be less than 70 percent of that of the story above. Hence the story sti ffness ratio If it exceeds 0.7 "Irregular" is printed. If it is less than 0.7, 'Regular' is printed.

2.Capacity Irregularity Check

According to Clause 5.3 b) of IS: 1893 Part-1-2016,

Lateral strength of any story shall not be less than 90 percent of that of the story above. Hence the story st rength ratio If it exceeds 0.9 "Irregular" is printed. If it is less than 0.7, 'Regular' is printed.


Irregularity Check according to IS: 16700 -2023

2. Natural modes of vibration

• Results > Results Tables > Story> Irregularity check parameter > IS: 16700-2023 > mode shape irregularity check

Mode shape Irregularity Ch

Imperfection

3. Mode shape irregularity Check

According to Clause 5.5.1 of IS: 16700-2023

The natural period of fundamental torsional mode of vibration (T_{tor}) shall not exceed 0.9 times the smaller of the natural periods of the fundamental translational modes of vibra tion ($T_{trans,min}$) in each of the orthogonal directions in plan. Hence if the ratio of T_{tor} to 0. 9* $T_{trans,min}$ exceeds 1 "Irregular" is printed, If less than 1 "Regular" is printed.

According to Clause 5.5.2 of IS: 1893 Part-1 -2016

The fundamental translational natural Period (T_x and T_y) in any of the two horizontal plan directions, shall not exceed 8s. hence here IF T_x , T_y < 8 sec, "Regular" is printed, IF exceed s 8s "Irregular" is printed.

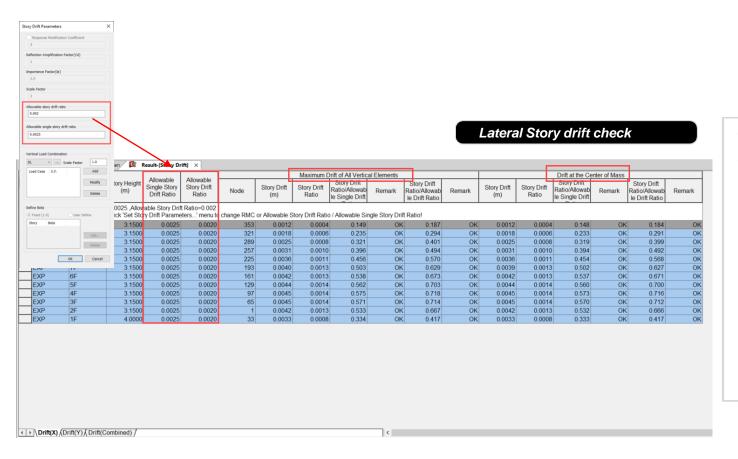
Approximate Time period of building according to IS: 16700-2023

OK

Cancel

1. Approximate Time period

Approximate Time peri


From the Main Menu select Load > Static Load > Lateral > Seismic Loads > Add > Structural parameters > Period Calculator

Х IS 1893:2016 Period Calculator X- Direction Period Y- Direction Period 1. T = 0.075 h^(0.75) ● 1. T = 0.075 h^(0.75) 2. T = 0.080 h^(0.75) \bigcirc 2. T = 0.080 h^(0.75) 3. T = 0.085 h^(0.75) 3. T = 0.085 h^(0.75) 4. T = 0.075 h^(0.75) /sqrt(Aw) 4. T = 0.075 h^(0.75) /sqrt(Aw) 5. T = 0.09 h / sqrt(d) 5. T = 0.09 h / sqrt(d) 6. T = 0.0644 h^(0.9) \bigcirc 6. T = 0.0644 h^(0.9) 7. T = 0.0672 h^(0.75) \bigcirc 7. T = 0.0672 h^(0.75) 36.47 36.47 h: (m²) 47.65 (m) Note: Formula 6 and 7 in both the direction are applicable only if h>50

Lateral Story Drift Check according to IS: 16700 - 2023

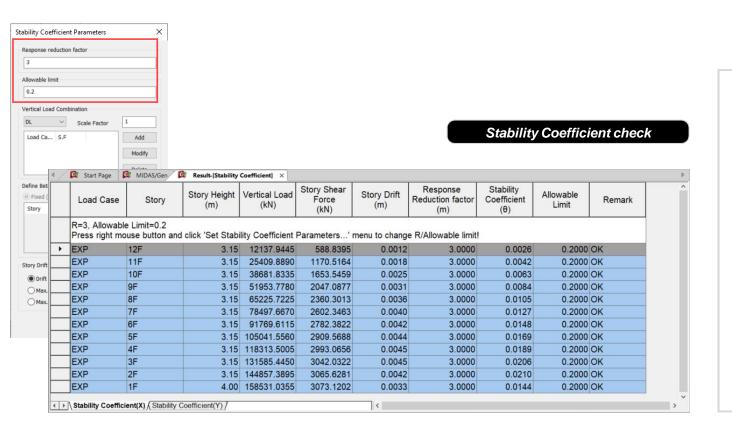
1. Lateral story drift check

Results > Results Tables > Story> check parameter > IS: 16700-2023 > Story drift

1. Lateral Story drift check

According to Clause 5.4.1 of IS: 16700-2023

When design lateral forces are applied on the building, the maximum inter-story lateral drift ratio (Δ_{Max}/h_i) limited to 1/500. For a single story the drift limit may be relaxed to h_i /400.


Hence input for allowable limit for single story is added, And if the story drift ratio exceeds the allowable limit "N.G" is printed else "OK" is printed

Note: For story drift calculation only two methods i.e. Maximum Drift of All vertical Element s and Drift at center of mass are considered for now.

Stability Coefficient Check according to IS: 16700 - 2023

1. Stability Coefficient check

Results > Results Tables > Story> check parameter > IS: 16700-2023 > Stability Coefficient

1. Stability Coefficient check

According to Clause 7.3.10 of IS: 16700-2023

Stability coefficient is by:-

$$\theta = \frac{P_i \Delta_i}{V_i h_{i-r} R} \le 0.2$$
 Where,

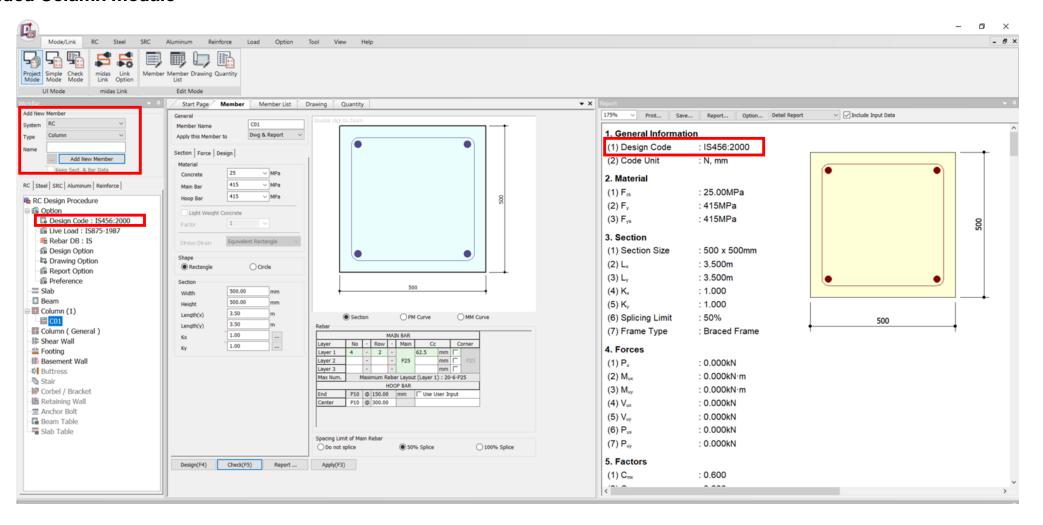
 θ =Inter-Storey Drifit stability coefficient

P_i=Total design vertical load at level i

 Δ_i = Design storey drift at level i

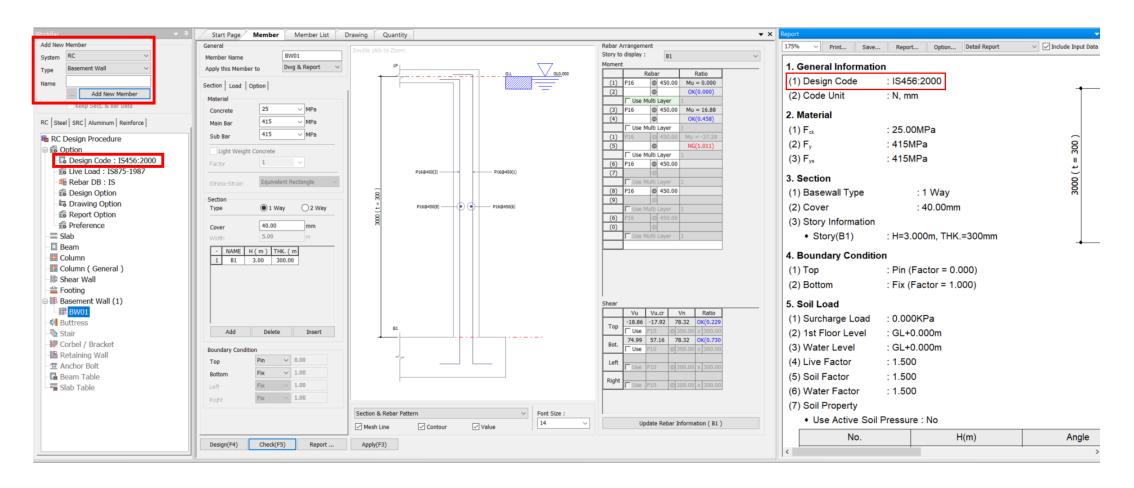
V_i= Design shear force at level i;

h_{i-r}=Story height below level i

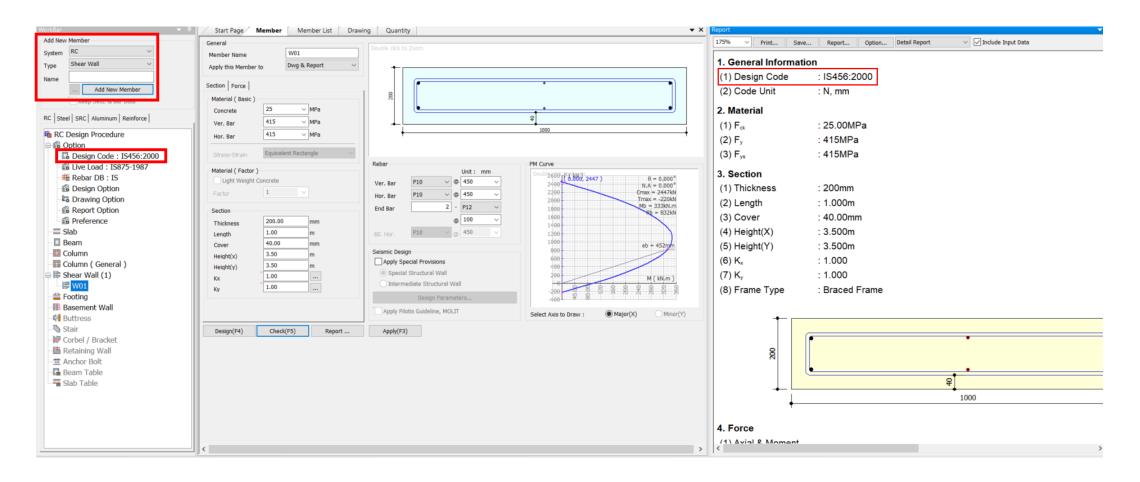

R=Response reduction factor

Improvement of IS code in Design+

- Added Design Module for IS :456-2000.
 - 1. Column Module
 - 2. Basement Wall Module
 - 3. Shear Wall Module


Added Design Module for IS:456-2000

Added Column module


Added Design Module for IS:456-2000

Added Basement wall module

Added Design Module for IS:456-2000

Added Shear wall module

