midas Gen Tutorial

Intergrated Solution System for Building and General Structures

[KBC2016]에 의한 Steel 건축물 구조해석 및 설계

Table of Contents

1. <mark>개</mark> 요		4
	1-1 모델 개요	5
	1-2 구조 개요	6
	1-3 구조 평면 및 단면	7
	1-4 적용기준	9
	1-5 사용재료	9
	1-6 특기사항	9
	1-7 적용하중	10

2. 구조 모델링12

2-1 초기 작업환경 및 단위계의 설정	14
2-2 부재재질과 단면데이터의 입력	14
2-3 2층 바닥 요소 입력	16
2-4 Beam End Release 조건 입력	20
2-5 기둥의 단면데이터 입력	21
2-6 기둥입력	24
2-7 대각부재 입력	27
2-8 Building Generation	29
2-9 층 데이터 입력	31
2-10 경계조건 입력	32

3-1 하중조건 설정	4
3-2 자중 입력	5
3-3 바닥하중 입력	6
3-4 Building Control Data4	4
3-5 고유치 해석조건 입력4	6
3-6 풍하중 입력4	8
3-7 내진설계범주 판정 및 1차 해석법 결정5	3

4. 구조해석	수행	

5. 해석결과 확인	58
5-1 반력 확인	59
5-2 비정형 평가	61
5-3 응답스펙트럼 해석결과 검토	70
5-4 사용성 평가	80

6. 부재설계82

6-1 하중조합조건 생성	84
6-2 설계변수 입력	86
6-3 Steel Code Check	90
6-4 설계 결과를 반영한 재해석/설계	94

Steel 건축물 구조해석 및 설계

1-1 모델 개요

Application 예제는 실무에서 일반적으로 사용하는 구조해석 및 설계 절차를 실례를 통하여 설명한 midas Gen의 사용법 안내입니다.

구조해석에 익숙하지 않거나 midas Gen을 처음 접하는 사용자들은 이 Application 예제를 통해 midas Gen의 다양하고 강력한 기능들을 효과적으로 활용하여, 정확하고 효율적인 구조해석과 경제적이고 안전한 구조설계를 수행하는 방법을 습득할 수 있습니다.

Application 예제를 통해 midas Gen의 실무적용법을 익히기 전에, Getting Started와 Analysis & Design Manual에서 구조해석과 설계의 기본이론을 습득하고, 따라하기 예제를 통해 midas Gen의 기본 기능을 익히는 것이 바람직합니다.

본 예제에서 midas Gen을 이용하여 철골조 건물을 해석하고 설계하는 절차는 다음과 같습니다.

- 1. 작업 기본환경 설정
- 2. 부재재질과 단면데이터의 입력
- 3. 절점과 요소의 입력
- 4. 경계조건의 입력
- 5. 하중의 입력
- 6. 구조해석의 수행
- 7. 해석결과의 검토, 비정형 평가 및 사용성 평가
- 8. 철근콘크리트부재 설계

1-2 구조 개요

그림 1.1 예제 구조물

건물위치	서울시
구조형식	Dual Systems with Intermediate Moment Frames and Special Steel Concentrically Braced Frames
건물용도	업무용
건물규모	지상 15층
구조시스템	지진하중의 25% 이상을 부담하는 중간모멘트 골조와 철골 특수 중심 가새로 이루어진 이중골조시스템

1-3 구조 평면 및 단면

그림 1.2 구조 평면

저층부 (2~4F)		고층부 (5~Roof)			
부재명	단면번호	단면치수	부재명	단면번호	단면치수
SG1	401	H 600×200×11/17	SG1	501	H 600×200×11/17
SG2	402	H 450×200×9/14	SG2	502	H 500×200×10/16
SG3	403	H 450×200×9/14	SG3	503	H 400×200×8/13
SG4	404	H 800×300×14/26	SG4	504	H 700×300×13/24
SG5	405	H 588×300×12/20	SG5	505	H 582×300×12/17
SB1	406	H 300×150×6.5/9	SB1	506	H 346×174×6/9

MIDAS

그림1.3 단면도

1-4 적용기준

건축구조기준(KBC 2016, 국토교통부)

1-5 사용재료

강재: Steel SS275(Beam, Brace), Steel SM355(Column)

1-6 특기사항

건물의 슬래브는 하중으로 고려하고 구조 모델에서는 제외합니다. 슬래브의 강막 효과 (rigid diaphragm effect)는 Story 기능을 이용하여 기구학적 구속조건으로 고려 합니다.

바닥판을 지지하는 작은보는 중력방향의 하중만을 전달하고, 구조물의 횡적거동에는 영향을 미치지 않으므로 해석모델에서는 제외하고, 작은보의 자중과 중력하중 전달 은 바닥하중 입력시 고려합니다.

지하구조물은 횡력에 영향을 받지 않고, 지진시 지반과 함께 거동하는 것으로 가정 하여 해석 모델에서는 제외합니다.

부재설계시 영향면적에 따른 적재하중의 감소는 본 예제에서는 고려하지 않습니다.

1-7 적용하중

・중력방향 하중

(단위: kN/m²)

	판매시설	업무시설	지붕
충	$2\sim 3F$	$4 \sim 15 F$	Roof
고정하중	3.7	4.3	5.2
활하중	4.0	2.5	2.0

모델에 적용되는 하중은 실의 용도와 마감의 종류에 따라 상세히 구분되어야 하지만, 본 예제에서는 해석의 편의를 위해 위의 표와 같이 몇 가지 대표적인 하중만을 적용합 니다.

적재하중은 등분포 적재하중이 작용할 때 구조부재에 더 큰 응력이 발생하는 것으로 가정하고, 집중 적재하중은 생략합니다.

· 풍하중

건축물에 작용하는 풍하중은 "건축구조기준(KBC 2016, 국토교통부)"를 적용하며, midas Gen의 풍하중 자동연산기능을 이용하여 입력합니다.

설계 기본 풍속	26 m/ sec (서울지역)
노풍도	В
중요도 계수	1.0
가스트 영향계수	GDx: 2.2, GDy: 2.2 (강체건축물)

지형에 의한 풍속할증은 불필요한 것으로 가정합니다.

• 지진하중(응답스펙트럼 해석)

지진하중은 "건축구조기준(KBC 2016, 국토교통부)"를 적용하며, midas Gen의 응답 스펙트럼 하중조건 생성기능을 이용하여 입력합니다.

지역계수	A=0.22(지진구역 I)
지반종류	s _c
내진등급	Ι
중요도계수	I _E =1.2(내진등급 I,도시계획구역)
내진설계범주	D
건물의 높이	$H_n = 64 m$
건물의 폭	$B_x = 36m, B_y = 27.6m$
반응수정계수	R = 6

횡력의 25% 이상을 부담하는 중간 모멘트 골조와 철골 특수 중심 가새 골조로 이루어 진 이중 골조 시스템

・ 단위 하중조합

구조물에 적용되는 하중조건은 다음과 같습니다.

하중조건번호		하중조건이름	적용하중
저	1	DL	고정하중
정적	2	LL	활하중
아 중 조	3	WX	풍하중 (전체좌표계 X 방향)
건	4	WY	풍하중 (전체좌표계 Y 방향)
동적하중조건		RX	응답스펙트럼 지진하중 (전체좌표계 X 방향)
		RY	응답스펙트럼 지진하중 (전체좌표계 Y 방향)

Steel 건축물 구조해석 및 설계

이 장에서는 예제모델의 기하형상과 모델을 구성하는 요소들의 재질 및 단면성질 그 리고 경계조건을 입력합니다.

midas Gen에서는 단위계, 사용자 좌표계, Snap 상황 또는 Activate 등을 사용자가 원하는 대로 설정하여 사용할 수 있습니다. 또한 모델데이터의 관리 및 수정을 손쉽게 할 수 있는 신개념의 모델링 기능인 Works Tree를 이용하여 모델링의 진행상황을 매 순간마다 일목요연하게 파악할 수 있습니다.

효율적인 구조해석작업을 수행하기 위해서는 사용자가 이러한 기능들을 이용하여 효과적인 작업환경을 구축하는 것이 가장 중요합니다.

2-1 초기 작업환경 및 단위계의 설정

- 1. 🕒 New 클릭
- 2. 🕞 Save를 클릭하고, 파일 이름에 'Steel(KBC2016)'입력
- 3. 저장(S) 버튼 클릭
- Status Bar의 단위변환창에서 'kN'과 'm'선택 Beint Grid, Point Grid
 Snap, Time Grid Snap 클릭 (Toggle off)⁹

2-2 부재재질과 단면데이터의 입력

요소를 생성하기 전에, 사용재질 및 저층부 보와 거더의 단면데이터를 입력합니다. 재질번호는 동일한 재료를 사용하더라도 부재의 종류(Girder, Column, Brace 등)별로 가급적 다양하게 부여하는 것이 바람직합니다

ג	ᅢ질번호	이름	종류	재료강도
	1	Girder_SS275	Steel	SS275
	2	Column_SM355	Steel	SM355
	3	Brace_SS275	Steel	SS275
		표 2.1 사용 재질		
1. N 2	Aain Menu에서 1 Add	Properties > Material > Mate	rial Properties 클릭	
2. 3. T	Type of Design 산] 비는 글 ᆨ [택란에서 'Steel' 선택		
4. S	tandard 선택란	'KS18(S)' 확인 [®]		
5. E	DB 선택란에서 '	SS275' 선택		
6. N	Name 입력란에 '	Girder_SS275'입력후, [Apply 버튼	트 클릭

- 7. 동일한 방법으로 'Column_SM355'를 입력하고 Apply 버튼 클릭
- 8. 동일한 방법으로 'Brace_SS275'를 입력하고 OK 버튼 클릭

에 따라 Icon Menu의 Toggle on 상황은 달라질 수 있습니다. 불필요한 Icon은 Toggle off하여 혼 란을 방지하는 것이 바람 직합니다.

♀ 사용자의 초기 환경설정

 General Standard 선택란에서 KS18(S)를 확인합니다.

	mess				General	
				1	Material ID 1 Name Girder_SS275	
) Name	Туре	Standard	DB	<u>A</u> dd	Elasticity Data	
Girder_SS275	Steel	KS18(S)	SS2	Modify	Type of Design Steel	
Brace SS275	Steel	KS18(S)	SS2	Delete	Standard KS18(S)	
				Copy		•
				Import	Product	
				Desurshes	Concrete	
				nenumber	Type of Material Standard	
					Isotropic Orthotropic Do	
					Staal	
					Modulus of Elasticity : 2,1000e+008 kN/m ²	
					Poisson's Ratio : 0.3	
					Thermal Coefficient : 1.2000e-005 1/IC1	
	.00		,		Weight Density : 76.98 kN/m°	
				Class	The Mace Density 7.85 kN/m*/g	
				Close		
					Modulus of Elasticity : 0.0000e+000 kN/m2	
					Poisson's Ratio : 0	
					Thermal Coefficient : 0,0000e+000 1/[C]	
					Weight Density 0 kN/m*	
					Use Mass Density: 0 kN/me/g	
					Plasticity Data	
					Plasticity Data Plastic Material Name NONE -	
					Plasticity Data Plastic Material Name NONE - Inelastic Material Properties for Fiber Model	
					Plastichy Data Plastic Material Name NONE Inelastic Material Properties for Fiber Model Concrete None	•
					Plastichy Data Plastic Material Name NONE Inelastic Material Properties for Fiber Model Concrete None Thermal Transfer	•
					Plastichy Data Plastichy Data Inelastic Material Properties for Fiber Model Concrete None - Steel None Thermal Transfer Specific Heat : 0 kcal/AN (C)	•
					Plastichy Data Plastic Matrial Name NONE Inelastic Matrial Properties for Fiber Model Concrete Concrete None Thermal Transfer Steel Specific Heat 0 Kcal/Abl (C) Heat Conduction 0	·

그림 2.1 재질의 입력

단면데이터는 작용하는 중력방향 하중에 의한 부재별 응력과 처짐을 약산하여 이를 만족하는 가정단면을 선정하여 입력합니다.

그림 1.2 저층부 구조평면의 단면데이터는 이러한 방법으로 선정된 것입니다. 그림 1.2 저층부 단면데이터를 참조하여 단면데이터를 입력합니다.

operties						_
Material	Section	Thickness				
ID	Name		Туре	Shape		<u>A</u> dd
401	2-4SG1		DB	Н		Modify
402	2-4SG2		DB	Н		Delete
403	2-4SG3		DB	Н		Delete
404	2-4565		DB	н		<u>C</u> opy
406	2-4SB1		DB	н		Import
						Benumber
						1,2
						L
						y
						4 3
H:0.3	B1:0.15	tw : 0.0065	tf1:0.009	B2:0	tf2	Close

그림 2.2 저층부 거더의 단면데이터 입력

2-3 2층 바닥 요소 입력

Frame, Arch, Truss 등 정형화된 구조형식을 간편하게 입력할 수 있는 Structure Wizard 를 이용하여 2층 바닥의 요소를 입력합니다.

1. 🔂 Hidden, 🔊 Display Node Numbers, 🔛 Display Element Numbers 클릭 (Toggle on) 2. Main Menu에서 Structure > Wizard > Base Structure > Frame 선택 @ 3. X Coord.의 Distance 에 '12', Repeat 에 '3' 입력 Add X-Coord, 🗌 버튼 클릭 4. Z Coord.의 Distance 에 '10.8', Repeat 에 '1' 입력 후 Add Z-Coord, 버튼 클릭 5. Z Coord.의 Distance 에 '6', Repeat 에 '1' 입력 후 Add Z-Coord, - 버튼 클릭 6. Z Coord.의 Distance에 '10.8', Repeat에 '1' 입력 후 Add Z-Coord, 비튼 클릭 7. [Edit] 탭에서 Generate Frame 버튼 클릭 8. Beta Angle 선택란에서 '90 Deg.' 선택® 9. Material 입력란에 '1', Section 에 '401' 선택® 10. [Insert] 탭에서 Insert Point 에 '0, 0, 6' 입력 11. Rotations의 Alpha에 '-90' 입력 버튼 클릭 12. Apply 13. 🔘 Zoom Fit 클릭 14. Frame의 배치를 확인한 후 Close 버튼 클릭

그림 2.3 Frame Wizard를 이용한 2층 바닥요소의 생성

Structure Wizard에서는 Undo/Redo 기능을 이용할 수 없습니다.

Frame Wizard에 사용되는
 Beta Angle은 X-Z평면을
 기준으로 적용됩니다.

Frame Wizard에서는 재질 번호와 단면번호를 일괄 적으로 부여하여 요소를 생성한 후 전체모델에서 요소별로 속성을 변경합 니다.

Frame Wizard로 생성한 요소등 구조평면과 상이한 부분을 수정합니다.

- 1. [] Top View 클릭
- 2. Filter 선택란(그림 2.3의 ❶)에서 'y'를 선택
- Select Window를 이용하여, Beta Angle이 '180°'인 1~4열의 모든 요소를 선택
- 4. Main Menu에서 Node/Element > Elements > Change Element Parameters 클릭
- 5. Parameter Type 선택란에서 'Element Local Axis' 선택
- 6. Beta Angle 입력란에 '0' 입력
- 7. Apply 버튼 클릭
- 8. Filter 선택란(그림 2.3의 ●)에서 'none'를 선택
- 1. 기능목록표에서 Create Element 선택
- 2. Section Name에서 '402:2-4SG2' 선택*
- 3. Nodal Connectivity 입력란에 마우스 한번 클릭
- 4. Element Snap 기능을 이용하여 요소 5와 8의 중앙부를 클릭하여 요소 25
 생성
- 5. Section Name에서 '406:2-4:SB1' 선택
- Mouse Editor 기능을 이용하여 다시 요소 5와 8의 중앙부를 클릭하여 요소 28 생성

그림 2.4 2층 바닥 요소 수정

□ - 리 2.4 ○ ●에서 Start
 Node Number 우측 ○ ...
 ○ 클릭하면 Largest Used
 Number +1 Option ○ 기본
 값으로 설정되어 있으므
 로, 가장 마지막에 입력된
 절점번호에 +1를 하여 새
 로 생성된 절점번호를 부
 여합니다.

예를 들어, 요소번호 33을 구성하는 절점번호는 21, 22가 됩니다.

그러나 Small Unused Number를 선택하고 요소 33을 생성하였다면 절점 번호는 1, 21이 됩니다. 본 예제에서는 기본값인 Largest Used Number +1에 의해 절점번호를 부여합 니다.

모델 데이터의 속성을 수정하거나 할당된 속성을 변경하려는 경우는 Works Tree의 Context Menu와 Drag & Drop 방식의 모델 데이터 수정기능을 이용하면 대단히 편리 합니다. 여기에서는 보와 거더의 단면번호를 변경하는 절차를 간단히 설명합니다.

- 1. **Display를 클릭하여 Node탭의 Node Number에 '**√'표시 해제
- 2. Property 탭에서 Property Name에 '√'표시 후, OK 버튼 클릭
- 3. Tree Menu의 Works 탭 선택
- 4. Select 기능을 이용하여, B열과 C열 Core 부분의 거더 중 단면번호 401로 입력된 SG2요소 (5, 8, 26, 27, 29, 30) 선택[®]
- 5. Work Tree > Properties > Section에서 '2-4SG2'를 지정한 상태로 마우스를 Modeling View Window 까지 Drag & Drop
- 6. 보 단면번호가 수정되는 것을 확인
- 7. 동일한 요령으로, Frame Wizard 요소 생성시 단면번호 401로 입력된 SG3, SG4,
 SG5 요소들의 단면번호를 모두 수정 (그림 1.2 구조평면도 참조)

그림 2.5 Drag & Drop 방식의 단면번호의 변경

요소의 선택은 Select by
 Window나 Select Single 등
 Graphic Selection 기능을
 이용하거나, 요소 선택창
 (그림2.4 @)에 대상 요소
 의 번호를 직접 입력하여
 선택할 수 있습니다.

일반적인 건물의 경우, 기준층 바닥을 먼저 생성하고 이를 복제하여 전체 건물을 완성 하는 방법으로 모델링이 이루어집니다.

이 때 기준층 바닥 요소에 부여된 단면번호에 증분을 부여하여 층별로 다양하게 변화 되는 단면번호를 반영하므로, 기준층 요소들의 단면번호를 정확히 입력하는 것이 대 단히 중요합니다.

입력된 요소들의 단면번호는 🛄 Display에서 Property Number 또는 Property Name을 화면에 표시하여 확인할 수도 있지만, 모델이 복잡한 경우에는 💽 Select Elements by Identifying 기능을 이용하면 요소에 부여된 속성들을 효과적으로 확인할 수 있습니 다.⁹

- 특정 절점이나 요소의 기 본적인 속성을 확인 할 때 는 Fast Query(그림 2.6 ●) 기능을 이용하면 평면별 로 부재선택을 편리하게 할 수 있습니다.
- Work Tree를 이용하면 부
 재이름을 더블클릭하여
 신속하게 확인할 수 있습
 니다.

- 1. Select Elements by Identifying 버튼 클릭
- 2. Select Type (그림 2.6❷)에서 'Section' 선택
- 3. Section List에서 '401: 2-4SG1' 선택
- 4. Add 버튼 클릭
- Modeling View Window에서 선택된 요소들을 그림 1.2와 비교하여 단면번호
 의 입력이 적절한지 확인
- 6. Section List에서 '402:2-4SG2' 선택
- 7. Replace 버튼 클릭
- 8. 이상과 같은 방법으로 요소에 부여된 단면번호 확인
- 9. Select Identity 대화상자의 Close 버튼 클릭

그림 2.6 단면번호의 확인

2-4 Beam End Release 조건 입력

모델에 포함된 작은보들은 양단부가 거더에 단순지지되므로 Beam End Release 조건을 부여합니다.

- 1. Select Single을 클릭하고 406:2~4SB1(요소 28) 선택
- 2. Main Menu에서 Boundary > Release/Offset > Beam End Release 선택
- 3. Pinned-Pinned 버튼 클릭
- 4. Apply 버튼 클릭

2-5 기둥의 단면데이터 입력

2층 바닥의 보와 거더가 입력되었으므로, 기둥요소를 생성하기 위해 기둥요소의 단면 데이터를 입력합니다.

철골구조물의 기둥부재는 절 별로 설치되므로, 이를 고려하여 단면번호를 부여합니 다.

C1~C4와 C1A를 철골단면으로 입력합니다.

		C1			C1A
절	층	단면번호	Steel	단면번호	Steel
6	14~15	106	H 500×500×30/32	156	H 400×400×13/21
5	11~13	105	H 500×500×30/32	155	H 400×400×13/21
4	8~10	104	H 550×550×32/34	154	H 400×400×13/21
3	5~7	103	H 550×550×34/38	153	H 400×400×13/21
2	3~4	102	H 550×550×38/42	152	H 400×400×13/21
1	1~2	101	H 650×650×40/44	151	H 450×450×20/28

			C2		C3		C4
절	층	단면 번호	Steel	단면 번호	Steel	단면 번호	Steel
6	14~15	206	H 500×500×30/32	256	H 400×400×13/21	306	H 400×408×21/21
5	11~13	205	H 500×500×30/32	255	H 400×400×13/21	305	H 400×408×21/21
4	8~10	204	H 550×550×32/34	254	H 400×400×13/21	304	H 400×408×21/21
3	5~7	203	H 550×550×34/38	253	H 600×600×13/21	303	H 450×450×28/32
2	3~4	202	H 550×550×38/42	252	H 700×700×20/28	302	H 450×450×28/32
1	1~2	201	H 600×600×40/44	251	H 700×700×20/38	301	H 450×450×28/32

표 2.2 기둥 단면데이터

자주 사용되는 단면데이
 터를 미리 fn,MGB 파일로
 저장해두면, 필요시에
 Import 기능을 이용하여
 필요한 단면데이터를 쉽
 게 불러올 수 있습니다.

C1의 단면은 Section 기능을 이용하여 입력하고 나머지 기둥부재들은 이미 만들어져 있는 Section Data를 Import하는 방법으로 단면을 입력하겠습니다.

먼저 1층 C1의 단면데이터를 입력합니다.

- 1. Main Menu에서 Properties > Material > Material Properties > Section탭 클릭
- 2. Add... 버튼 클릭
- 3. User 선택
- 4. Section ID에 '101'을 입력하고 Name에 '1-2C1'입력
- 5. 'H-Section' 선택
- 6. 'H: 0.65, B1: 0.65, tw: 0.04, tf1: 0.044'입력
- 7. Section Data 대화상자의 OK 버튼 클릭

Section ID 101	T H-Section
Name 1-2C1	● User ● DB KS -
	Sect, Name 🖉 Built-Up Section
	Get Data from Single Angle DB Name KS + Sect, Name +
1 2 4 3	H 0.65 m B1 0.65 m tw 0.04 m tf1 0.044 m B2 0 m tf2 0 m r1 0 m r2 0 m
Offset : Center-Center Change Offset	Consider Shear Deformation.

그림 2.7 Steel의 단면의 입력

단면데이터의 Import 기능을 이용하여 401:2-4SG1부터 406:2-4SB1을 제외한 모델의 모든 단면데이터를 입력합니다.

Properties Material Section Thickness ID Name Shape Add... Туре Modify... User User User User DB User DB Delete <u>С</u>ору П Import <u>R</u>enumber X 🚺 g7 Steel Tutorial ▼ 🍫 _Steel Tutorial 검색 200 h H 구성 ▼ 새 쫄더 = • 🔳 🔞 200 201 1-2C2 User 이름 수정한 날짜 유형 拴 즐겨찾기 🗼 다운로드 💻 바탕 화면 데 H-Section(Import용).mgb 2019-01-18 오전... MIDAS/GENw Do. 💹 최근 위치 🚞 라이브러리 💽 문서 🛃 비디오 Import Section from other Project 🔛 사진 🚽 음악 Section List 🔎 컴퓨터 => 🏭 로컬 디스크 (C:) 🕞 로컬 디스크 (D:) 🔻 ⊀ <= 파일 이름(N): midas Gen Files(*.mgb) • 열기(O) 🔻 취소 All 11-13C1A 14-15C1A None 201: 1-2C2 202: 3-4C2 Numbering Type Keep ID, (if ID, already exists, It will be replaced) New ID. € ОК Cancel

그림 2.8 Import기능을 이용한 단면데이터 입력

▶ 바른을 클릭하여 저층
 부 단면데이터를 중복 입
 력하면, 나중에 입력된 단
 면데이터로 Update됩니다.

단면데이터를 선택할 때,
 Shift 키를 누른 상태로 선
 택할 데이터를 클릭한 후
 스크롤 바를 사용하여 마
 지막 데이터를 클릭하면
 그 사이의 모든 단면데이
 터가 선택됩니다.

2-6 기둥입력

절점을 선요소로 확장 변환하는 Extrude 기능을 이용하여 1층의 기둥을 생성합니다.

- 1. Display Node Number 클릭 (Toggle on)
- Display를 클릭하여 Property탭에서 Property Name의 '√'표시 해제 후
 OK 버튼 클릭
- 3. 🛅 Iso View 클릭
- 5. 🜔 Select All 클릭
- 6. 🕓 Unselect Window로 절점 19, 20를 지정하여 대상에서 제외 ⁹
- 7. Main Menu에서 Node/Element > Elements > Extrude Elements 선택
- 8. Extrude Type에서 'Node → Line Element' 확인
- 9. Reverse I-J 선택란에 '√' 표시[®]
- 10. Element Type에 'Beam' 확인
- 11. Material에서 '2 : Column_SM355' 선택
- 12. Section에서 '101 : 1-2C1' 선택
- 13. Generation Type에서 'Translate' 확인
- 14. Translate에서 'Equal Distance' 확인
- 15. dx, dy, dz 입력란에 '0, 0, -6' 입력
- 16. Apply 버튼 클릭
- 17.
 Display를 클릭한 후 Element 탭에서 Local Direction을 선택한 후

 Apply
 버튼 클릭
- 18. 변경된 Local Direction 확인
- 19. Local Direction 선택 해제(Check off) 한 후, OK 버튼 클릭

- 절점 19와 20 하부에는 기
 등이 없으므로 Extrude 대
 상에서 제외합니다.
- ✔ Reverse I-J 선택란은
 ▲ Extrude 수행시 Translate
 방향과 반대로 요소의 성
 생방향을 결정합니다.
 요소의 생성방향과 요소
 좌표계는 부재력 확인시
 혼돈을 방지하기 위해 가
 급적 일치시킵니다.

그림 2.9 1층 기둥의 생성

Extrude Elements 수행시 '0'으로 일괄 입력된 기둥의 Beta Angle을 수정합니다.

- 1. [1] Select Recent Entities 클릭
- 2. 기능명령표에서 Change Element Parameters 클릭
- 3. Parameter Type에서 'Element Local Axis' 선택
- 4. Assign에서 Beta Angle에 '90' 입력 후, Apply 버튼 클릭
- 5. Close 버튼 클릭

그림 2.10 기둥 Beta Angle 수정

101:1-2C1으로 입력된 기둥의 단면번호를 구조평면에 맞게 수정합니다.

- 1. [] Top View 버튼 클릭
- 2. Tree Menu의 Works 탭 선택
- 3. Properties > Sections에서 '101 : 1-2C1'을 선택한 후 마우스 우측버튼 클릭
- 4. Context Menu에서 'Select' 선택 후, 🌇 Activate 클릭
- 5. Display의 Property탭에서 Property Name에 '✓'표시(Check on)
- 6. OK 버튼 클릭
- 7. [N] Display Node Number 클릭(Toggle off)
- 8. 그림 1.2를 참조하여 코어 부분의 'C1A' 선택 (요소 47, 48)
- 9. Tree Menu의 Works 에서 Properties > Section에서 '151 : 1-2C1A' 항목을 지정한 상태로 마우스를 Modeling View Window까지 Drag & Drop
- 10. 요소의 단면번호가 수정되는 것을 확인
- 11. 동일한 요령으로 구조평명도를 참고하여 각 위치 해당 기둥으로 모두 수정
- 12. [▶] Activate All 버튼 클릭

View Structure Node/Elem	nent Properties Boundary	Load Analysis Results F	Pushover Design Seismic Eva	luation Query Tools MODS Module	😻 Help 🛩 X
🖉 🔍 👋 🌿 XDelete	e + • Mirror 🦂 🔍 🖬	/ 🤄 🗁 🖬 🗶 💒	🛛 🍟 🖄 Delete 🗮 🛛 💼	🚦 📲 Effective Beam - 🍸 Column Capital	Auto-mesh 💼 Define Sub-Domain
Create Translate Divide Merge	e 🔜 Scale 📑 🕴 Nodes Cres	ate Translate Extrude Divide Merg	e Intersect Chan	ge Elements Column Strip *	Map-mesh
Nodes Sprojec	t 🧯 Table Elem	ents 🗖	/// Mirror 🔬 Parame	ters Table Drop Panel *	Define Domain
		815 - 1 7	annan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Tree Menu	4 G Start Page G MI	DAS/Gen X			Menu 2 🕈 🗮
Node Element Boundary Mass Load				Me	nu Tables Group Works Report Seismic
Change Element Parameters 👻 📖 🍵	1-2C4	1-202	1-202	1-204	Vorks
Start Number		1	-	· · · · · · · · · · · · · · · · · · ·	😭 Eigenvalue Analysis (Type=Eigen
Node Number : 39					Nodes : 38
Element Number : 49					Elements : 48
Recomptor Tune				-	T Properties
Parameter Type					Material : 3
Material ID Section ID					2 : Column_SM355
Thickness ID					Section : 56
O Wall ID					- I 101 : 1-2C1 = •
Element Local Axis	1-203	1-261	1-201A 1-201	1-203	- I 102:3-4C1
 Element Type 					- I 104 : 8-10C1
Reverse Element Local					- I 105 : 11-13C1
Align Element Local					- I 150 :
Mode	1.002	1.001	1 2014 1 201	1.002	- I 151 : 1-2014
Element Type Frame -	1 m		inter inter	1.4	- I 153 : 5-701A
Assign				Drag & Drop	- I 155 : 11-13C1A
 Beta Angle Het, Point Ret, Vector 					- I 156 : 14-15C1A
Beta Angle : 90 👻 [Deg]					- I 201 : 1-2C2
 Coordinate Dir, 					- I 202: 3-4C2
Local Axis					- I 204 : 8-10C2
⊛ Local-x ⊂ Local-y					- I 206 : 11-15C2
Direction					- I 250 :
Coordinate Dir. +Z +	1-204	1-202	1-202	1-204	- I 252 : 3-4C3
Origin Point					- I 253:5-7C3 - I 254:8-10C3
m	Message Window			# x]	- I 255 : 11-19C3
○ Change					- I 256 : 14-15C5
Angle Increment : 0 [Deg]					- I 301 : 1-2C4 - I 302 : 3-4C4
					- I 303 : 5-7C4
Apply Close -	»				- I 304 : 8-10C4 - I 305 : 11-13C4
Tree Menu Task Pane	Command Messa	ge / Analysis Message /			
For Help, press F1		Non	el U: 0, 27.6, 0	G: 0, 27.6, 0 kN 👻 m 👻	� l‡ ▶ non ♥ 😨 🚺 1 ‡ / 2 🛫

그림 2.11 Drag & Drop 방식의 기둥 단면번호의 수정

Display를 이용하여 수정한 기둥의 Beta Angle, 재질, 단면번호 등을 확인합니다.

- 1. Select Elements by Identifying 클릭
- 2. Select Type에서 'Section' 선택
- 3. 거더 부재의 입력방법과 동일한 방법으로 기둥부재의 단면번호 확인 *
- 4. Select Elements by Identifying 대화상자의 Close 버튼 클릭

♥ Hidden 을 Toggle off하면 선택된 요소의 구분이 뚜 렷하므로 단면번호의 확 인이 쉬워집니다.

2-7 대각부재 입력

표 2.3의 대각부재 단면목록표는 Brace로 사용될 단면(1001~2003)을 나타내는 것으로, 단면 데이터의 Import 기능에 의해 이미 단면이 정의되었습니다.

+	Σ	K방향	Ŋ	/방 향
6	단면번호	단면 Size	단면번호	단면 Size
11~15	1003	H-200×200×8/12	2003	H-200×200×8/12
4~10	1002	H-294×200×8/12	2002	H-294×200×8/12
1~3	1001	H-294×302×12/12	2001	H-294×302×12/12

표 2.3 대각부재 단면목록표

그림 2.12 Brace 단면데이터 입력

전체좌표계 X, Y축 양방향으로 작용하는 횡력에 저항하기 위해 Brace를 입력합니다.

- 1. Display를 클릭하여 Property 탭에서 Property Name 선택 해제(check off)
- 2. Node Number, Number 클릭 (Toggle on)
- 3. [] Zoom Window를 이용하여 코어부분을 확대(그림 2.13 참조)
- 4. Main Menu에서 Node/Element > Elements > Create Elements 선택
- 5. Element Type에서 'Truss'선택
- 6. Material Name란에서 '3 : Brace-SS275'선택
- 7. Section Name란에서 '1001 : 1-3BR1'선택*
- 8. Mouse Editor 기능을 이용하여 X 방향 Brace 입력
- 9. Section No. 입력란에 '2001'입력, 자동 선택된 1-3BR2 단면 확인
- 10. 단계 8과 같은 요령으로 Y 방향 Brace 입력(그림 2.13 참조)

그림 2.13 Brace 입력

 사용되는 단면의 종류가 많은 경우에는 Section
 Name 에서 단면을 선택하
 는 것보다 Section No.에
 단면번호를 직접 입력하
 는 것이 더 편리합니다.

2-8 Building Generation

건축물에 적용되는 층(Story)의 개념을 이용하여 입력된 요소들을 쉽게 복제할 수 있는 Building Generation기능으로, 구조물의 상층부를 모델링합니다.

Building Generation기능을 이용하면 요소의 복제시 발생되는 층고의 변화와 요소 종 류별 단면번호의 증가를 모두 고려하여 한꺼번에 복제함으로써, 건축 구조물을 간단 하게 모델링 할 수 있습니다.

모델의 층고는 그림 1.3 단 면도 참고

- 1. 🔯 Auto Fitting 클릭 (Toggle on)
- 2. Note Numbers, Display Element Numbers 클릭 (Toggle off)
- 3. 🜔 Select All 클릭
- 4. Main Menu에서 Structure > Building > Control Data > Building Generation 선택
- 5. Building Generation에서 Number of Copies에 '2' 입력[®]
- 6. Distance(Global Z) 입력란에 '5'입력
- 7. Operations의 Add 버튼 클릭
- 8. Number of Copies에 '6'을 입력하고 Distance(Global Z)에 '3.8' 입력
- 9. Add 버튼 클릭
- 10. Number of Copies에 '6'입력
- 11. Distance(Global Z)입력란에 '4.2'입력 후 Add 버튼 클릭
- 12. List 하부의 Building Generation Table 버튼 클릭

♥ Building Generation Table 에서 첫번째 열의 숫자는 복제 차수를 의미합니다. 예를 들어 두번째 복제를 수행할 때 즉, 2층의 요소 를 3층으로 복제할 때 기 둥의 단면 번호에 '1'의 증 분을 부여한다는 의미입 니다.

	Distance (m)	Material	Column	Beam	Brace	Wall
1	5.0000	0	0	0	0	0
2	5.0000	0	1	0	0	0
3	3.8000	0	0	100	1	0
4	3.8000	0	1	0	0	0
5	3.8000	0	0	0	0	0
6	3.8000	0	0	0	0	0
7	3.8000	0	1	0	0	0
8	3.8000	0	0	0	0	0
9	4.2000	0	0	0	0	0
10	4.2000	0	1	0	1	0
11	4.2000	0	0	0	0	0
12	4.2000	0	0	0	0	0
13	4.2000	0	1	0	0	0
14	4.2000	0	0	0	0	0
15						

그림 2.14 Building Generation Table

- Copy Attribute 기능은 절
 점이나 요소를 복제하면
 서 대상에 부여되어 있는
 경계조건, 정적하중, 질량
 그리고 설계변수 등의 속
 성을 동일하게 적용하는
 기능입니다. 이 기능을 이
 용하면 후속 작업을 줄일
 수 있으므로 대단히 효과
 적입니다.
- ♀ 그림에서 Wire Frame 으로 표현된 요소는 Section이 정의되지 않은 요소들입 니다.

1.	그림 2.14과 같이 단면번호의 증분을 입력
2.	OK 버튼 클릭
3.	Copy Element Attribute에 '✓'표시 확인하고 우측의 🛄 버튼 클릭 ^e
4.	Boundaries의 Beam and Release에 '✓'표시 확인 [®]
5.	OK 버튼 클릭
6.	Building Generation Dialog Bar의 Apply 버튼 클릭
7.	🛃 Select Plane 클릭
8. 2	KY Plane을 선택하고 지붕층 임의의 절점을 지정하여 Z Position에 '64'을 자동입력
9.	Apply 버튼 클릭 후 Close 버튼 클릭
10.	▶ Activate 클릭
11.	📃 Display의 Boundary 탭에서 Beam End release Symbol에 '√'표시
12.	Apply 버튼을 클릭하고 Release 조건이 복제되었는지 확인
13.	■ Beam End Release에 '✓'표시 해제하고, OK 버튼 클릭

그림 2.15 Building Generation 후 지지조건 복사여부 확인

2-9 층 데이터 입력

여기에서는 층 관련 부가기능을 이용하여 모델링을 쉽게 할 수 있도록 층 데이터를 입력합니다.

층 데이터는 벽요소를 사용하거나, 하중기준에 의한 풍하중 및 지진하중의 자동연산 입력기능을 이용하고자 할 때 반드시 입력되어야 합니다.

- 1. Main Menu에서 Structure > Building > Control Data > Story 선택
- 2. Auto Generate Story Data... 버튼 클릭 9
- 3. OK 버튼 클릭
- 4. Cancel 버튼 클릭

Gr 0	round Level m					
	Module Name	Story Name	Level(m)	Height(m)	Floor Diaphragm	
۲	Base	Roof	64.00	0.00	Consider	
	Base	15F	59.80	4.20	Consider	
	Base	14F	55.60	4.20	Consider	
	Base	13F	51.40	4.20	Consider	
	Base	12F	47.20	4.20	Consider	
	Base	11F	43.00	4.20	Consider	
	Base	10F	38.80	4.20	Consider	
	Base	9F	35.00	3.80	Consider	
	Base	8F	31.20	3.80	Consider	
	Base	7F	27.40	3.80	Consider	
	Base	6F	23.60	3.80	Consider	
	Base	5F	19.80	3.80	Consider	
. 1	Base	4F	16.00	3 80	Consider	

그림 2.16 층 데이터

- ♥ midas Gen은 Story Data를
 자동 생성할 때, 입력되어
 있는 모든 절점의 Z좌표
 를 층의 위치로 인식합니
 다. 따라서 Story Level이
 아닌 위치에 절점이 생성
 된 경우에는 해당층을
 Unselect List로 이동시켜
 Story Data에서 제외되도
 록 합니다.
- Wind와 Seismic탭에서는 풍하중과 지진하중을 자 동연산하는데 적용될 풍
 압면의 폭과 층의 중심, 우
 발편심거리 등이 층별로
 정리되어 있으며, 수정도
 가능합니다.

MIDAS

2-10 경계조건 입력

모델의 기하형상 입력이 완성되었으므로, 경계조건을 입력합니다.

본 예제에서는 지하층 기둥을 고려하여 1층 기둥의 지지조건을 고정으로 가정합니다.

Active All 클릭 1. \triangleright 2. Display를 클릭하고 Reset All 클릭 OK 버튼 클릭 3. 4. Select Plane 클릭 5. XY Plane을 선택하고 1층 바닥의 임의의 절점을 지정하여 Z Position에 '0'을 자동입력 Close 버튼 클릭 6. 7. Main Menu에서 Boundary > Supports > Define Supports 실행 8. D-All에 '√'표시 Apply 버튼 클릭 9. 48 -1 1 1 × 1 0 0 0 0 1 4 ° 4 ° 1 1 0 0 0 0 0 4 1 0 0 Berlace O Delet e (Local Ry Dy ... Y RZ RX DX D+ALL Dx V Dy V Dz V Br-ALL Rx By Br Rz B Apply Close ode Checking Result to Table 48. e Checking Result to Table. • m • 🖓 🕾 🕨 non • 😢

그림 2.17 구조물의 지지조건 입력

지점에 모멘트가 전달되는 Fixed조건으로 하고자하는 경우에는 R-All까지체크 해야하며, 본 따라하기에서는 Hinge조건으로 설정합니다.

Steel 건축물 구조해석 및 설계

3. 하중 입력

3-1 하중조건 설정

구조물에 작용하는 중력방향 및 횡방향 하중을 입력합니다. 작용하중을 입력하기 위 해서 먼저 하중조건을 설정합니다.

- 1. Load Menu에서 Static Load Cases 선택
- 2. Static Load Cases 대화상자에서 그림 3.1과 같이 하중조건을 입력
- 3. Close 버튼 클릭

Typ Des	pe scription	: Dead Loa n : Dead Loa	d (D) d	•	<u>M</u> odify <u>D</u> elete
	No	Name	Туре	Descri	ption
•	1	DL	Dead Load (D)	Dead Load	
	2	LL	Live Load (L)	Live Load	
	3	WX	Wind Load on Structure (W)	Wind Load X-dir	
	4	WY	Wind Load on Structure (W)	Wind Load Y-dir	
	5	EX	Earthquake (E)		
	6	EY	Earthquake (E)		
*					

그림 3.1 구조물의 하중조건 설정

- 풍하중이나 지진하중과 같이 작용방향이 구분되 어야 하는 하중은 하중조 합 조건을 자동생성할 때 부여되는 Description에 사 용자가 입력한 단위하중 조건의 이름이 그대로 적 용됩니다.
- 지진하중은 응답스펙트럼
 해석을 통해 고려되므로
 정적 하중조건을 설정할
 필요는 없습니다.

3. 하중 입력

3-2 자중 입력

모델에 포함된 부재의 자중을 중력방향으로 고려합니다.

- 1. Load Menu에서 Self Weight 확인
- 2. Load Case Name 선택란에 'DL' 선택
- 3. Self Weight Factor 'Z' 입력란에 '-1' 입력
- 4. Operation에서 Add 버튼 클릭

Tree Menu 7 × Node Element Boundary Mass Load		
Self Weight 👻		
Load Case Name		
DL • []		
Load Group Name		
Self Weight Factor		
Z X Wgt. Y Wgt. Y Wgt. X		
X 0 Y 0 Z 0		
Load Case X Y Z Group		
DL 0 0 -1 Default		
۰		
Operation Add Modify Delete		
Close		
Tree Menu Task Pane		

그림 3.2 구조물의 자중 자동계산 설정

3. 하중 입력

3-3 바닥하중 입력

구조물에 작용하는 중력방향 하중을 입력합니다. 본 예제에서는 외벽 마감재나 설비 시설(기계실, Cooling Tower 등)의 하중은 해석의 편의를 위해 생략합니다.

중력방향 하중을 Floor Load 기능을 이용하여 입력하기 위해서는 '따라하기 1'에서 설명한 바와 같이 Floor Load Type을 먼저 정의합니다.

- 1. 기능목록표에서 Assign Floor Loads 선택
- 2. Load Type 선택란 우측의 ... 버튼 클릭
- 3. "모델개요"의 "적용하중"을 참고하여, 필요한 Floor Load Type을 모두 정의 (그림 3.3 참조)
- Close 버튼 클릭 4.

ree Menu 🕂 🗸	Floor Load Type	×	
Node Element Boundary Mass Load Assign Floor Loads 🗸 🗔 🎧	Floor Load Type Name & Description		
Load Group Name Default	Name : 시동 Description : Roof		
Floor Load Type	Floor Load & Load Case		
Load Type: 판매시설 🛛 🛄 2	Load Case Floor Load		
Distribution: Two way Load Angle(A1): 0	1. DL -5.2 kN/m ² 2. LL -2 kN/m ²	✓ Sub Beam Weight ■ Sub Beam Weight	
Exclude Inner Elem, of Area	3, NONE ▼ 0	Sub Beam Weight	
Allow Polygon Type Unit Area	4. NONE 0	Sub Beam Weight	
Nth Sub-beam 3rd	5. NONE - 0 kN/m ²	Sub Beam Weight	
	6. NONE - 0 kN/m ²	Sub Beam Weight	
	7. NONE - 0 kN/m ²	🗌 Sub Beam Weight	
	8. NONE - 0 kN/m ²	Sub Beam Weight	
Unmodeled Sub-Beam	Define Load Case,		
No, of Sub Beams 💠 🛛 🚔			
Sub-Beam Angle(A2): 90 -	Name Description	Add	
Unit Self Weight: 0 kN/m	판매시설 2~3F	Modifu	
Load Direction & Projection	업무시설 4~15F	initiality	
Load Direction : Global Z 👻	▶ 지붕 Roof	Delete	
Projection : 💿 Yes 💿 No	*		
Description:			
Nodes Defining Loading Area:			
Copy Floor Load			
Axis: 🔘 x 🔘 y 🎯 z		+ Close	
Distances: 0 m	L		
(Example : 5, 3, 4,5 , 3@5,0)			
Convert to Bearn Load Type	그림 3.3 바닥하중 형태 입력		

Apply Close

✤ Floor Load는 보요소에 의 해 형성된 삼각형 또는 사 각형의 폐구간에 적용할 수 있습니다. 폐구간 내의 절점은 동일한 평면에 위 치하여야 하지만 그 평면 이 X-Y평면과 평행할 필 요는 없습니다. Floor Load 기능을 이용하 면 경사지붕이나 외벽면 의 풍하중 또는 적설하중 도 간단하고 정확하게 입 력할 수 있습니다.
입력한 Load Type 의 하중이 적용될 영역을 지정하여 바닥하중을 입력합니다. Copy Floor Load 기능을 이용하여 동일한 하중이 적용되는 여러 개의 층에 바닥하중 을 동시에 입력할 수 있습니다.

- Display를 클릭하고 Load 탭에서 Floor Load 을 선택하여 '√'표시한 후
 OK 버튼 클릭
- 2. 陆 Activate by Identifying 클릭
- 3. 'Story'를 선택하고 List에서 '2F', '+ Below' 선택
- 4. Active 버튼을 클릭하고 Close 버튼 클릭
- 5. ▲ Angle View를 클릭하고 Horizontal에 '50', Vertical에 '60'입력 후

 ○K
 버튼 클릭하고 Zoom Fit 클릭 ♥
- 6. Node Number 클릭 (Toggle on)
- 7. 🚮 Hidden 버튼 클릭 (Toggle off)
- 8. Load Type 선택란에서 '판매시설'선택
- 9. Distribution Type에 'One Way' 선택
- 10. No. of Sub Beams에 '3'입력
- 11. Unit Self Weight에 '0.9'입력®
- 12. Copy Floor Load에 '✓'표시
- 13. Axis에서 'z'를 확인하고, Distances에 '5'입력
- 14. Mouse Editor기능을 이용하여 4×A열의 절점 '4'와 '8, 5, 1, 4'를 순서대로 지정[®]
- 15. 1×D열의 절점 '13'과 '9, 12, 16, 13'을 순서대로 지정

Active Identity	×
Current UCS Plane Named Plane Boundary Group Loading Area Group	 Story Group Load Group Member
47 37 4F 56 6F 7F 8F 9F 9F 10F 11F	E
○ Floor ○ +Above ● -	+Below 🔘 +Both
Active Active Active Active Active All	+ Inactive + Close

- Angle View의 각도는
 Floor Load 의 확인이 용이
 한 View Point를 설정한 것
 입니다.
- 가상보의 자중이 입력되
 면 Display 에서 Floor
 Load 의 Load Value에 자
 중이 포함되어 화면에 출
 력됩니다.
- Floor Load 입력내용에 오 류가 있으면 재하영역 지 정 후에도 화면에 Floor
 Load Label이 표시 되지 않 습니다.
 Floor Load 입력시 범하기 쉬운 오류는 다음과 같습 니다.
 요소의 중복 입력
 요소종류 입력오류
 (트러스 요소 사용)
 요소 분할 오류
 (벽요소와 조합시)
 재하구간이 평면이 아닌
 - 경우 • 가상보에 의해 분할된
 - 구간이 오각형 이상의 다각형인 경우

MIDAS

그림 3.4 Floor Load 입력

- 재하영역의 평면형상에
 따라 A1을 '0' 혹은 '90'으
 로 변경하면서 재하영역
 을 지정하면 좀 더 간단하
 게 하중을 입력할 수 있습
 니다.
- 계단실의 하중은 해석의
 편의를 위해 생략합니다.

 midas Gen에서는 이미 생 성된 요소의 방향을 기준 으로 하중의 재하방향이 결정되기 때문에 임의의 방향에 의한 하중 입력이 용이합니다.

- 1. Load Angle(A₁)에 '90'입력[®]
- 2. Sub-Beam Angle(A₂)에 '0'입력
- Display를 클릭하고 Load 탭에서 Floor Load Name을 선택하여 '✓'표시한
 후 OK 버튼 클릭[®]
- 4. No. of Sub Beams에 '1' 입력
- 5. 1×C열의 절점 '9'과 '10, 6, 5, 9'를 순서대로 지정
- 6. 3×C열의 절점 '11'와 '12, 8, 7, 11'을 순서대로 지정
- 7. No. of Sub Beams에 '0' 입력
- 8. Core 부분의 절점 '18'와 '17, 19, 20, 18'을 순서대로 지정
- 9. 하중이 입력되지 않은 부분이 있는지 확인(그림 3.5 참조)
- 10. [Active All 클릭

그림 3.5 Floor Load Name에 의한 바닥하중 입력 확인

고층부 업무시설과 지붕층의 바닥하중을 입력합니다. 하중의 입력방법은 저층부 판매시설과 동일합니다.

- Story Name 은 수직부재를 기준으로 부여됩니다. 즉
 '4F'이면 4층의 기둥과 5
 층바닥을 의미합니다.
- Label에서 Floor Load는 하
 중이 재하된 요소에 표시
 되고, Floor Load Name은
 하중입력시 지정한 절점
 에 표시됩니다.
 따라서, 한 개의 층만
 Active 하였더라도 Floor
 Load Name은 기둥요소의
 시작점 즉, 하부층에 입력
 된 하중도 Display됩니다.

- 1. 陆 Activate by Identifying 클릭
- 2. Story에서 '4F', '+Below' 선택[®]
- 3. Active 와 Close 버튼 클릭
- 4. 📃 Display를 클릭하고 Load 탭에서 'Floor Load Name'해제[®]
- 5. OK 버튼 클릭
- 6. Load Type에서 '업무시설' 선택
- 7. Distribution Type에 'One way' 선택
- 8. Load Angle(A1)에 '90' 확인
- 9. No. of Sub Beams에 '3' 입력
- 10. Sub-Beam Angle(A2)에 '0' 확인
- 11. Unit Self Weight에 '0.9' 확인
- 12. Copy Floor Load에 '✓'표시 후 Axis에 'z'확인
- 13. Distances 입력란에 '6@3.8, 5@4.2' 입력
- 14. Mouse Editor 기능을 이용하여 1×B열의 절점 '71'와 '74, 70, 67, 71'를 순서대로 지정
- 15. 동일한 요령으로 고층부 업무시설의 바닥하중을 입력(그림 3.6 참조)

그림 3.6 고층부 업무시설 하중 확인

•

ø

최상층의 하중을 입력합니다.

	1. La Active Identity 대화상자의 Story에서 'Roof', '+Below' 선택
	2. Active 버튼과 Close 버튼 클릭
	3. 📃 Display를 클릭하고 Load 탭에서 'Floor Load Area' 선택
	4. Load Type에서 '지붕' 선택
	5. No. of Sub Beams에 '3' 입력
	6. Copy Floor Load에 '✓'표시 해제
코어부분과 캔틸레버 부	7. 저층부 및 고층부와 동일한 요령으로 지붕층 바닥하중을 입력 🕯
분의 가상보 개수와 하중	8. 절점 '359'와 '362, 358, 355, 359'를 순서대로 지정
배치 방향에 주의합니다.	9. 절점 '367'과 '370, 366, 363, 367'을 순서대로 지정
	10. No. of Sub Beams에 '1' 입력
	11. 절점 '363'과 '364, 360, 359, 363'을 순서대로 지정
	12. 절점 '365'와 '366, 362, 361, 365'를 순서대로 지정
	13. 절점 '372'와 '365, 361, 371, 372'를 순서대로 지정
Floor Load 는 입력된 형식	14. No. of Sub Beams에 '0' 입력
저장되었다가 Perform	15. 절점 '372'와 '371, 373, 374, 372'를 순서대로 지정
Analysis를 클릭하면 Beam	16. 절점 '374'와 '373, 360, 364, 374'를 순서대로 지정
Load로 계산되어 각각의	17. 🚺 Node Number 클릭 (Toggle off)
요소에 적용됩니다. 그러므로, 최초 가정한 하	18. [Active All, 🔲 Front View 클릭
중이 변경되면 Floor Load	19. 기능목록표 우측의 버튼 클릭
Type에서 하중값을 수정	 20. Floor Load Table에서 입력된 내용을 확인 [®]
함으로써 모델에 쉽게 반 여하 스 이스니다	21. Floor Load Table의 닫기 버튼 (그림 3.8 ❶ 클릭)
	22. Tree Menu의 Works 탭에서 지금까지 입력된 바닥하중의 확인(그림 3.9 참조)
	23. 🛅 Iso View 클릭
	하고 이저 버튼 클릭

그림 3.7 지붕층 바닥하중 입력

View Structure Node/Tiene	nt	Proper	ties Bounda	ry Load Ana	hsis Results	Pusho	er Design	Query T	oals MOD	S Module						9	Help 🐂 👻
Static Loads Opnamic Loads) Settle	ement/M	w. 61	🖚 🖉	Self Weight	🚣 Nodal B	ody Force 🛛 🖽 V	Vind Loads	四. Elene	t fress	are Loads	🖙 Initial Forces 🔹	F Lo	ading Area Pla	ne		
Temp./Prestress () Construction Stage	Load	Tables	LP	10 (t,	Nodal Loads	Loads to	Masses - ERV	ind Pressure *	III Line	A Hydro	istatic Pressure	Assign Floor Loa	di *				
Moving Load Cheat of Hydration			Static Load	Using Load	Specified Displ.		18	eismic Loads	A Dypica	Autor	n Plane Loads -	Tinishing Materia	al Loads				
Load Type			Create	Load Cases	Structure L	oads / Masse	5	Lateral	Beam Los	d Pres	sureLoad	Ini	tial Forces/Etc.				
S.C. BRITERSA	58.0		411 G. G. >4	~			. [****	'R ⇔ R N	U SA EME	160							
Tree Marcine Rev V									11 10 1 20	* 40 @ W	CORE IN THE REAL		_	_	_		
Node Element Roundary Marr 1010	1	100 2	carrivage pe		loor Load X	1		I				-					
COLO COLORIDA COLO			I and Tons	Distribution Ton	Load Angle	Sub	Sub Beam	Unit Self	Load	Omination	Nodes for	Oversisting	Exclude	Allow	Comm		^ H
Assign Floor Loads 🔹 🚛			Load Type	Discribution Type	[[deg]]	No	([deg])	(kN/m)	Direction	Frojection	Loading Area	Description	Elem.	Type	Gloup		10
Load Group Name		45	업무시설	One Way	90.0	0	0.00	0.9000	Global Z	No	315, 316, 312,	3	Г		Default		
Default •		46	업무시설	One Way	90.0	0 .	0.00	0.9000	Global Z	No	339, 340, 336,	3	Г	Г	Default		
Floor Load Type		47	업무사설	One Way	90.0	0 :	0.00	0.9000	Global Z	No	77, 78, 74, 73		Г	Г	Default		
Load Type: 刀器 🔹 🛄		48	업무시설	One Way	90.0	0 1	0.00	0.9000	Global Z	No	101, 102, 98, 9	9	Г	Г	Default		
Distribution: One way		49	업무시설	One Way	90.0	0 :	0.00	0.9000	Global Z	No	125, 126, 122,	1	F	F	Default		
Load Apple(A1): 90 - [dea]		50	입무사꾼	One Way	90.0	0 .	0.00	0.9000	Global Z	No	149, 150, 146,	1	-	-	Default		2
English and the states		51	입구시온	One Way	90.0		0.00	0.9000	Global Z	NO	173, 174, 170,	1	1		Default		1
Allow Polycon Type Unit Area		62	<u> 이무지원</u>	One Way	90.0	0	0.00	0.9000	Global Z Clahal Z	No	197, 198, 194,	1	-		Default		
Two Subham		54	업무사설	One Way	90.0	0 .	0.00	0.9000	Global Z	No	245 245 242	2	_	-	Default		
the second second		55	업무사실	One Way	90.0	0	0.00	0.9000	Global Z	No	269.270.265.	2	Г	Г	Default		
N 2 3 3		66	업무사설	One Way	90.0	0 1	0.00	0.9000	Global Z	No	293, 294, 290,	2	Г	F	Default		
1 2 2 3 2 4		67	업무시설	One Way	90.0	0 :	0.00	0.9000	Global Z	No	317, 318, 314,	3	E		Default		
1. 200 200 100		58	업무시설	One Way	90.0	0 :	0.00	0.9000	Global Z	No	341, 342, 338,	3	Г	Г	Default		q
h <u>i i god</u>		59	업무사설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	84. 83. 85. 86			F	Default		
Unmodeled Sub-Beam		60	업무사업	One Way	90.0	0 0	0.00	0.9000	Global Z	No	108, 107, 109,	1		_	Default		4
No, of Sub Beams 💠 D		61	업무지같	One Way	90.0	0 0	0.00	0.9000	Global Z	No	132, 131, 133,	1	-	-	Default		·
Sub-Beam Angle(A2): 0 -		62	어무지율	One Way	90.0		0.00	0.9000	Global Z	No	100, 100, 107, 107, 100, 100, 100, 100,	4		-	Default		3
Unit Self Weight: 0.9 kN/m		64	업무세성	One Way	90.0	0 0	0.00	0.9000	Global Z	No	204 203 205	2	- F		Default		2
Load Direction & Projection		65	업무시설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	228, 227, 229,	2	F		Default		
Load Direction : Global Z 🔹		66	업무시설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	252, 251, 253,	2	Г		Default		
Projection : 💮 Yes 🖲 No		67	업무시설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	276, 275, 277,	2	Г	Г	Default		
Description:		68	업무시설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	300, 299, 301,	3	F	F	Default		
Nodes Defining Loading Area:		69	업부사설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	324, 323, 325,	3	F		Default		
		70	업무시설	One Way	90.0	0 0	0.00	0.9000	Global Z	No	348, 347, 349,	3		-	Default		
El Canu Elsor Load		11	지문	One Way	90.0	0	0.00	0.9000	Global Z	No	359, 362, 358,	3	-	-	Default		
Ands: Ox Ov @z		72	118	One Way	90.0	0	0.00	0.9000	Global Z	No	367, 370, 366,	3		-	Default		9
Distances: 689385842 m		74	지분	One Way	90.0	0 .	0.00	0.9000	Global Z	No	365 366 362	3			Default		
(Example : 5, 3, 4,5, 3@5,0)		75	지불	One Way	90.0	0 .	0.00	0.9000	Global Z	No	372, 365, 361,	3	Г	F	Default		
Convert to Beam Load Tune		76	지붕	One Way	90.0	0 0	0.00	0.9000	Global Z	No	372, 371, 373,	3	Г	Г	Default		
testu Class		77	지붕	One Way	90.0	0 0	0.00	0.9000	Global Z	No	374, 373, 360,	3	Г	Г	Default		
oppiy	٠													Г			
																	-
																	* *
		_															~
	>>																
Tree Menu Task Pane	RB	\ge \ge	Command Me	ssage / Analysis Me	888ge /	_		_	_	_					<		
For Help, press F1													Node-187	U:0, 10.8,	35 G:	a 10.8,35 kN • m • 🔆 🛣 🕨 non • 🝸	0 ; / 2

그림 3.8 Floor Load Table

그림 3.9 Works Tree에 의한 입력하중의 확인

3-4 Building Control Data

건축구조기준(KBC 2016)에 따른 내진설계를 위해서 반드시 체크해야 하는 항목 중 전도모멘트(Overturning Moment), 안정계수(Stability Coefficient), 강성 비정형 평가(Stiffness Irregularity Check)는 Story Shear를 사용합니다. 그러므로 Building Control Data의 Story Shear Force Ratio 옵션이 체크되어 있는지 확인합니다.

- 1. Main Menu에서 Structure > Building > Control Data 클릭
- 2. Story Shear Force Ratio에 '✓' 표시 확인 [®]

버튼 클릭

<u>0</u>K

3.

'Story Shear Force Ratio'옵 션은 기본값으로 체크되 어 고려하고 있습니다.

✿ midas Gen 에서

Building Control
□ Use Ground Level Ground Level : □ ✓ Consider Mass below Ground Level for Eigenvalue Analysis ✓ Story Shear Force Ratio ✓ Consider Wind and Seismic Loads for Flexible Floors ■ Eccentricity Ratio
Story Center (Mass/Load)
Use Mass OUse Axial Force Use Shear Force
Load Case ; DL 👻
Scale Factor : 1
Load Case Scale Add
Modify Delete
Story Stiffness Center
X-Directional Load Case : DL 👻 🛄
Y-Directional Load Case : DL 👻
 Story Response of Time History Results Story Center Story Average Story Drift by Maximum of Vertical Elements
OK <u>C</u> ancel

그림 3.10 Story Shear Force Ratio 옵션 체크

3-5 고유치 해석조건 입력

지진하중과 풍하중에 대한 구조물의 반응을 알기 위해서는 구조물이 가지고 있는 고 유의 동적특성(주기, 모드형상)에 대해서 알아야 합니다.

구조물 고유의 동적 특성을 알기 위해서 상시에 작용하는 질량 데이터와 고유치해석 조건을 입력 합니다.

본 예제에서는 구조물에 입력한 하중데이터를 질량데이터로 자동치환합니다.♥

- 1. Main Menu에서 Structure > Type > Structure Type 선택
- 2. Convert Self-weight into Masses에서 'Convert to X, Y' 선택 @ 맄
- Diaphragm중심에 질량값 을 직접 입력할 수도 있습 니다.

♀ 질량데이터는 절점이나

♀ 건물의 횡방향 동적 특성 에 큰 영향을 미치지 않는 수직방향의 질량성분은 해석소요시간을 고려하여 무시할 수 있습니다.

♀ 질량성분은 필요에 따라 Z방향을 추가 할 수 있으 며, 그 경우에는 자중 또한 Z방향이 고려되도록 합니 다.

✤ Story Mass Table은 자중과 정적하중으로부터 치환된 질량과 사용자가 입력한 질량을 각 층별로 정리한 것입니다. Rotational Mass는 각 절점 에 입력된 Translational Mass를 근거로 질량중심 점의 위치에서 계산한 값 입니다.

3.	ОК	버튼 클
----	----	------

- 4. Main Menu에서 Load > Structure Loads/Masses > Loads to Masses 선택
- 5. Mass Direction 에서 'X, Y' 확인 [®]
- 6. Load Type for Converting에서 모든 하중에 '√' 표시 확인
- 7. Load Case 선택란에서 'DL'선택
- 8. Scale .Factor '1' 확인 후 Add 버튼 클릭
- 9. 0K 버튼 클릭
- 10. Main Menu에서 Query > Weight/Mass/Load Table > Story Mass Table 선택 [@]
- 11. Story Mass Table 확인 후 테이블창 닫기

ructure Type	Loads to Masses
Structure Type ③ ③ ⑦ 〇 X-Z Plane ⑦ Y-Z Plane ⑦ X-Y Plane	- Mass Direction
 Lumped Mass Consider Off-diagonal Masses Considering Rotational Rigid Body Mode for Modal Parti Consistent Mass Convert Mass Convert Self-weight into Masses Convert to X, Y, Z Convert to X, Y 	Load Type for Converting V Nodal Load Beam Load Floor Load Pressure (Hydrostatic) Gravity: 9.806 m/sec ²
Gravity Acceleration : 9,806 m/sec ² Initial Temperature : 0 [C]	Load Case : DL Scale Factor : 1
Align Top of Slab(Plate) Section with Floor (X-Y Plane) for Panel 20 Align Top of Slab(Plate) Section with Floor (X-Y Plane) for Disp OK	LoadCase Scale Add DL 1 Modify
그림 3.11 하중을 질량으로 치환 설정	Remove Load to Mass Data

그림 3.12 질량데이터 자동생성

		ge 💵 Mil	DAS/Gen 📴 S	tory Mass ×			
		Level	Translatio	nal Mass	Rotational Mass	Center	of Mass
	Story	(m)	X-DIR (kN/g)	Y-DIR (kN/g)	(kN/g·m²)	X-Coord (m)	Y-Coo (m)
	Use Ground L	evel : OFF					
	Consider Mas	s under Groun	d Level : ON				
•	Roof	64.0000	591.29626381	591.29626381	124774.5712	18.0041	13.8
	15F	59.8000	486.60964061	486.60964061	107250.1164	17.9805	13.8
	14F	55.6000	486.60964061	486.60964061	107250.1164	17.9805	13.8
	13F	51.4000	486.60964061	486.60964061	107250.1164	17.9805	13.8
	12F	47.2000	486.60964061	486.60964061	107250.1164	17.9805	13.8
	11F	43.0000	487.77439321	487.77439321	107392.6110	17.9810	13.8
	10F	38.8000	487.84469865	487.84469865	107319.2418	17.9812	13.8
	9F	35.0000	486.75025147	486.75025147	107101.4328	17.9809	13.8
	8F	31.2000	488.90632578	488.90632578	107861.4178	17.9810	13.8
	7F	27.4000	491.06240008	491.06240008	108621.4027	17.9811	13.8
	6F	23.6000	491.06240008	491.06240008	108621.4027	17.9811	13.8
_	5F	19.8000	492.94832373	492.94832373	109108.3622	17.9812	13.8
_	4F	16.0000	501.53937545	501.53937545	111099.5600	17.9843	13.8
_	3E	11 0000	451 67515752	451 67515752	99755 8971	17 9891	13.8
_	2F	6 0000	458 48652956	458 48652956	100901 5582	17 9902	13.8
_	1F	0 0000	0.00000000	0 00000000	0 0000	0 0000	0.0
-		Total	7375 78468176	7375 78468176			
_		ADDITION/	L MASSES FOR TH	E CALCULATION OF	FEQUIVALENT SEIS	MIC FORCE	
		Level	Translatio	inal Mass			
_	1 Story	(m)	V DIP	Y-DIR			
	1	(11)	7-Dir	1 - Dirk			
	Roof	64.0000	0.00000000	0.00000000			
_	Roof 15F	64.0000 59.8000	0.00000000	0.00000000			
_	Roof 15F 14F	64.0000 59.8000 55.6000	0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000			
	Roof 15F 14F 13F	(III) 64.0000 59.8000 55.6000 51.4000	0.00000000 0.00000000 0.00000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F	(III) 64.0000 59.8000 55.6000 51.4000 47.2000	0.00000000 0.00000000 0.00000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F	(III) 64.0000 59.8000 55.6000 51.4000 47.2000 43.0000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F	(III) 64.0000 59.8000 55.6000 51.4000 47.2000 43.0000 38.8000	0.0000000 0.0000000 0.0000000 0.0000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F	(III) 64.0000 59.8000 55.6000 51.4000 47.2000 43.0000 38.8000 35.0000	0.00000000 0.00000000 0.00000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F	(III) 64.0000 59.8000 55.6000 51.4000 47.2000 43.0000 38.8000 35.0000 31.2000	COUR COURDON COUDDONO COUDDON COUDDON	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F 7F	(iii) 64.0000 59.8000 55.6000 51.4000 47.2000 43.0000 38.8000 35.0000 31.2000 27.4000	X-000 0.0000000 0.0000000 0.0000000 0.00000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F 7F	(iii) 64.0000 59.8000 55.6000 47.2000 43.0000 38.8000 35.0000 31.2000 27.4000 23.6000	X-000 0.0000000 0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F 7F 6F 5F	(iii) 64.0000 59.8000 55.6000 47.2000 43.0000 38.8000 35.0000 31.2000 27.4000 23.6000	X-DIA 0.00000000 0.00000000 0.00000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F 7F 6F 5F 4E	(iii) 64.0000 59.8000 55.6000 47.2000 43.0000 38.8000 38.8000 31.2000 27.4000 23.6000 19.8000 16.0000	X-0000 0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 00F 9F 8F 7F 6F 5F 4F 2e	(iii) 64,0000 59,8000 55,6000 51,4000 47,2000 38,8000 35,0000 31,2000 23,6000 19,8000 19,8000 16,0000	X-DIR 0.00000000 0.00000000 0.00000000 0.000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F 7F 6F 5F 4F 3F	(m) 64.0000 59.8000 55.6000 51.4000 47.2000 33.8000 33.0000 31.2000 23.6000 19.8000 16.0000 11.0000	X-000 0.00000000 0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000 0.000000			
	Roof 15F 14F 13F 12F 11F 10F 9F 8F 7F 6F 5F 4F 3F 2F	(m) 64.0000 59.8000 55.6000 47.2000 47.2000 43.0000 38.8000 35.0000 31.2000 27.4000 23.6000 19.8000 16.0000 11.0000 6.0000	X-00x 0.00000000 0.00000000 0.00000000 0.00000000	0.00000000 0.00000000 0.00000000 0.000000			

그림 3.13 Story Mass Table

다음은 고유치 해석을 위한 모드 수를 설정합니다.

- 1. Main Menu에서 Analysis > Analysis Control > Eigenvalue 실행
- 2. Number of Frequencies : 15 입력 후 OK 버튼 클릭

Type of Analysis	
Eigen Vectors	Ritz Vectors
 Subspace Iteration 	
U Lanczus	
Eigen Vectors	
Number of Frequencies : 15	Sturm Sequence Check
🔚 Frequency range of interest 🗉	
Frequency range of interest Search From : 0	[cps]
Frequency range of interest Search From : 0 To : 1600	[cps] [cps]

그림 3.14 고유치 해석 조건 설정

3-6 풍하중 입력

풍하중은 "건축구조설계기준(KBC 2016, 국토교통부)"에 따라 midas Gen의 풍하중 자동연산 입력기능을 이용하여 입력합니다.

풍하중을 입력하기 전에 자동산정된 풍압면의 폭과 하중의 작용점이 적절한지 판단 합니다.

- 1. Main Menu에서 Structure > Building > Control Data > Story 클릭
- Wind 탭(그림 3.15 ●)을 선택하여 각 방향의 풍압면적 계산에 적용될 폭과 하중의 작용점을 확인[®]

3.	OK)	버튼 클릭
4.	<u>C</u> lose	버튼 클릭

Gro 0	ata und Level m							×
	Name	Floor Width X-Dir(m)	Floor Width Y-Dir(m)	Floor Center Xc(m)	Floor Center Yc(m)	Eccentricity X-Dir(m)	Eccentricity Y-Dir(m)	Â
\mathbf{F}	Roof	36.00	27.60	18.00	13.80	5.40	4.14	
	15F	36.00	27.60	18.00	13.80	5.40	4.14	
	14F	36.00	27.60	18.00	13.80	5.40	4.14	
	13F	36.00	27.60	18.00	13.80	5.40	4.14	Ξ
	12F	36.00	27.60	18.00	13.80	5.40	4.14	
	11F	36.00	27.60	18.00	13.80	5.40	4.14	
	10F	36.00	27.60	18.00	13.80	5.40	4.14	
	9F	36.00	27.60	18.00	13.80	5.40	4.14	
	8F	36.00	27.60	18.00	13.80	5.40	4.14	
	7F	36.00	27.60	18.00	13.80	5.40	4.14	
	6F	36.00	27.60	18.00	13.80	5.40	4.14	
	5F	36.00	27.60	18.00	13.80	5.40	4.14	
()	4F ∫ Story λ Win	36.00 d ∕ Seismic ∕	27.60	18.00	13 80 III	5 40	4 14 •	Ŧ
Auto Generate Story Data Define Module								

그림 3.15 풍하중 자동계산에 적용될 건물의 방향별 폭 확인

	1. 고유치해석결과를 얻기 위해 해석을 한번 수행합니다.
	Analysis >Perform Analysis 수행(F5)
	2. Load > Lateral > Wind Load 실행
	Add 클릭
	3. Load Case : WX 선택
	4. Wind Load Code : KBC(2016) 선택
	5. 'General Method' 선택
	6. 지표면 조도구분 : B, 기본풍속 : 26, 중요도계수 : 1.0,
	지풍평균높이 : 64(m) 입력 및 확인
	7. Gust Factor : 2.2 확인(값 조정 필요시 상세버튼 활용)
	8. 'Middle Low Rise Building' 선택
	9. Wind Response 체크
	Parameters of Wind Vibration 클릭
	Import from Eigenvalue Results 클릭
	10. 1차 고유진동수, 1차진동 일반화질량, 일반화 관성모멘트 입력확인
X방향 풍하중 입력 후, Y 바향 포하주은 여소으로	11. Damping Ratio 0.015 입력 후, OK 클릭
입력하고자 하는 경우에	12. Add/Modify Wind Load Specification 대화창에서
는 최종 X, Y방향 모두 입	Wind Load Direction Factor : X-Dir : 1.0, Y-Dir : 0 입력후, Apply 클릭
력 후에 [OK]를 클릭합니 -	
-[·	

Session2 midas Gen 실습 / Steel

3. 하중 입력

Add/Modify Wind Load Specification					
Load Case Name : WX Wind Load Code : KBC(2016) Description :					
Simplified Method Image: Organization of the second sec					
Wind Load Parameters Exposure Category : B Basic Wind Speed : 26 m/sec					
Importance Factor : 1.0 -					
Average Roof Height : 64 m					
Include Topographic Effects					
Kzt :					
Vertical Range For Kzt : 0 m					
Rigid Structure Plexible Structure					
Gust Factor : GDx 2.2000 GDy 2.2000					
Load Evaluation Using Force Coefficient					
User Defined Force Coefficient : 1					
O Auto, Calculator					
Chimneys, Tanks, and similar structures 👻					
Middle Law Rice Building Midb Rice Duilding					
☑ Wind Response					
Parameters of Wind Vibration					
Wind Load Direction Factor (Scale Factor)					
X-Dir, 1 Y-Dir, 0 Z-Rot, 0					
Additional Wind Loads (Unit:kN,m)					
Story Along Along Across Add-X Add-Y Add-X Add-X Add-X					
× >					
Wind Load Profile OK Cancel Apply					

Parameters of Wind Vibration			×						
Parameters									
X-Breadth (B, Ly) :	27,6	m							
Y-Breadth (B, Lx) :	36	m							
X-Natural Frequency (Nox)	X-Natural Frequency (Nox) :								
Y-Natural Frequency (Noy)	:	0,418010450803	Hz						
Torsional Natural Frequency	/ (Not) :	0,292117681480	Hz						
X-1st Vibration Generalized	Mass (Mx+):	2467,552723578	kN/g						
Y-1st Vibration Generalized	Mass (My∗) :	2467,552723578	kN/g						
Generalized Inertial Moment	t (l*) :	423135,9410392	kN/g·m²						
Damping Ratio (Zf) :		0,015							
Import from Eigenvalue Results OK Cancel									
Damping Ratio			×						
Average Roof Height		Material							
(m)	Conc	rete							

0.018

0.015

0.015

0.015

0.01

0.02

0.02

0.015

0.012

Close

그림 3.16 풍하중 입력

H = 40 H = 50

H = 60

H = 70

H > 80

midas Gen의 풍하중 또는 등가정적 지진하중 자동연산기능에서, 적용할 하중기준과 변수를 입력하면 각 층별로 계산된 하중을 Table과 Graph의 형태로 확인할 수 있습니 다.

또한, Make Wind Load Calc. Sheet 버튼을 클릭하여 자동계산된 내역 을 Text File의 형태로 출력할 수도 있습니다

- 1. Add/Modify Wind Load Specification 대화창 하단에서 Wind Load Profile... 버튼 클릭
- 2. Along, X-Dir, Story Shear 선택, GL의 Story Shear 확인®
- 3. <u>C</u>lose 버튼 클릭
- 4. Add/Modify Wind Load Specification 대화상자에서 Apply 버튼 클릭
- 5. Load Case Name에서 'WY' 선택
- 6. Wind Load Direction Factor에서 X-Dir. 를 '0'으로 Y-Dir. 를 '1'로 수정
- 7. [Wind Load Profile,..] 버튼 클릭
- 8. GL의 Story Shear를 확인하고 Close 버튼 클릭
- 9. Add/modify Wind Load Specification 대화상자에서 OK 버튼 클릭
- 10. Wind Loads 대화상자의 Close 버튼 클릭

그림 3.17 Wind Load Profile

 자동연산되는 풍하중은 사용자가 입력한 Ground
 Level(GL)상부의 층에 적
 용됩니다.
 Building Control에서 GL
 을 별도로 입력하지 않으
 면 Base Level을 GL로 간
 주합니다.

♀ 모델에 포함되지 않은 옥 탑이나 바람막이 벽 등에 의해 추가되는 풍하중은 Additional Wind Loads에 서 직접 입력합니다.

🚰 MIDAS	/Text Editor - [Steel(KBC2016).wpf]		x
🚰 File	Edit View Window Help		Ξ×
🛛 🗅 🖻 🛛	🖥 🚭 🖸 🖽 🕷 📾 📾 🛤 🕷 🖂 🖂 🗮	🔺 % 🎉 a+b A 🕂 🔂 🕾 🖽 🖶 🧣	
00001 00002 00003	WIND LOADS BASED ON KBC(2016) (General Method/Midd	le Low Rise Building) [UNIT: kN, m]	-
00004 00005 00006 00007 00008 00009 00010 00011 00012	Exposure Category Basic Wind Speed [m/sec] Importance Factor Average Roof Height Topographic Effects Structural Rigidity Gust Factor of X-Direction Gust Factor of Y-Direction	: B : Vo = 26.00 : Iw = 1.00 : H = 64.00 : Not Included : Rigid Structure : GDx = 2.20 : GDy = 2.20	
00013 00014 00015 00016 00017 00018 00019	Damping Ratio X-Natural Frequency Y-Natural Frequency X-1st Vibration Generalized Mass Y-1st Vibration Generalized Mass	: Zf = 0,015 : Nox = 0,34 : Noy = 0,42 : Mx+ = 2467,55 : My+ = 2467,55	
00020 00021 00022	Scaled Wind Force Wind Force Pressure	: F = ScaleFactor * WD : WD = Pf * Area : Pf = qH+GD*Cpe1 - qH*GD*Cpe2	
00023 00024 00025 00026	Across Wind Force	: WLC = gamma + WD gamma = 0,35*(D/B) >= 0,2 gamma_X = 0,27	
00027 00028 00029 00030	Max, Displacement Max, Acceleration	gamma_Y = 0,46 : XD,max = {{Cla+gH+B+H} / ((2+phi+ No_D)^2+M+_D)} *{1/(2+alpha+2)+(1,5+gD+1(z)+(BD+RD)^1/2)/(alpha+2)} : aD_max = (1,5+gD+CD+gH+B+H+1(z)+(RD)^1/2)/(M+ D+(alpha+2))	
00031 00032 00033 00034	Velocity Pressure at Design Height z [N/m^2] Velocity Pressure at Mean Roof Height [N/m^2] Calculated Value of qH [N/m^2]	: qz = 0,5 * 1,22 * Vz^2 : qH = 0,5 * 1,22 * VH^2 : qH = 520,50	
00035 00037 00037 00038 00040 00041 00042 00043 00044 00045 00046 00046	Basic Wind Speed at Design Height z [m/sec] Basic Wind Speed at Mean Roof Height [m/sec] Calculated Value of VH [m/sec] Wind Speed for 1-year return period [m/sec] Calculated Value of VH [m/sec] Height of Planetary Boundary Layer Gradient Height Power Law Exponent Exposure Velocity Pressure Coefficient Exposure Velocity Pressure Coefficient Exposure Velocity Pressure Coefficient Kar at Mean Roof Height (KHr)	: Vz = Vo+Kzr+Kzt+Iw : VH = Vo+KIr+Kzt+Iw : VH = 29,21 : V1H = 0,6+Vo+KHr+Kzt : V1H = 17,53 : Zb = 15,00 : Zg = 450,00 : Alpha = 0,22 : Kzr = 0,81 : Kzr = 0,81 : Kzr = 0,45+Zg^Alpha (Z>Zg) : KHr = 1,12	
00049 00050 00051 00052	Coefficient of Mean Wind Force Peak Factor Non Resonance Coefficient	: CD = 1,2*(z/H)^(2*alpha) : gD = (2*In(600*No_D)+1,2)^1/2 : BD = 1-[1/[1+5,1*(LH/(H+B))^1,3*(B/H)^k}^1/3] & = 0,33 (H>=B)	
00053 00054 00055 00056 00057 00058	Turbulence Scale Resonance Coefficient Size Coefficient Spectral Coefficient Intensity of Turbulence	k = -U,33 (H <b) : H= 1004(H/30)^0.5 : RD = (phi*SD#FD)/(4+Z1) : SD = 0,84/{(1+2.1*(No_D*H/VH))*(1+2.1*(No_D*B/VH))} : FD = 4*(No_D*LH/VH)/(1+71*(No_D*LH/VH)^2)^5/6 : IH = 0,1*(H/Zg)^(-alpha=0,05)</b) 	
00060 00061 00062 00063	Scale Factor for X-directional Wind Loads Scale Factor for Y-directional Wind Loads	: SFx = 0.00 : SFy = 1.00	
00064 00065 00066 00067 00068	Wind force of the specific story is calculated as th of the following two parts. 1. Part I : Lower half part of the specific story 2. Part II : Upper half part of the just below story	e sum of the forces of the specific story	
00070 00071 00072	The reference height for the calculation of the wind therefore, considered separately for the above menti	pressure related factors are, oned two parts as follows,	
00073 00074 00075 00076	Reference neight for the wind pressure related facto 1, Part I : top level of the specific story 2, Part II : top level of the just below story of th	rs(except topographic related factors) e specific story	
00077 00078 00079 00080	Reference height for the topographic related factors 1. Part I : bottom level of the specific story 2. Part II : bottom level of the just below story of	: the specific story	
00081	PRESSURE in the table represents Pf value		
			▶
Ready		Ln 0 / 233 , Col 1 NUM	14

그림 3.18 풍하중 계산서

3-7 내진설계범주 판정 및 1차 해석법 결정

지진지역과 지반종류가 결정되면 단주기 지반증폭계수와 1초 주기 지반증폭계수 (F_a, F_v)가 자동 계산되고, 단주기 및 주기1초 설계스펙트럼 가속도(S_{DS}, S_{D1})도 자동으로 계산됩니다. 그리고 내진등급을 선택하면 내진설계범주가 자동 판정됩니다. (그림 3.19 참조).

- 1. Load Menu에서 Lateral Loads > Seismic Loads 선택
- 2. Add
- 3. Load Case Name : EX 선택
- 4. Seismic Load Code 에 KBC(2016) 확인
- 5. Seismic Load Parameters에서 Seismic Zone '1' 확인
- 6. Zone Factor에 '0.22'확인
- 7. Site Class선택란에서 'Sc' 선택
- 8. Depth to MR에 '20' 입력
- 9. Seis. Use Group 선택란에서 'I'확인
- 10. Importance(Ie) 선택란에서 '1.2' 확인
- 11. Seis. Design Category 에서 'Sds(C), Sd1(D) → D' 확인 [@]
- 12. Static Seismic Loads 대화상자의 Close 버튼 클릭
- 13. 단계3과 같은 요령으로 EY Load 입력

Load Case Name	: EX		▼ .	
Seismic Load Code	: [KBC(2016)		-	
Description :				
- Seismic Load Para - Design Spectral f	ameters Response Ac	c elerat	ion	
Seismic Zone	1 -	Fa	1,18000	
Zone Factor (S)	0,22 👻	Fv	1,58000	
Site Class	Sc 👻	Sds	0,43267	9
Depth to MR	20, m	Sd1	0,23173	g
Period Coef, (Cu)	1,46827]		
Seis, Use Group	I 🚽 In	nportar	ice 1,2	•
Seis Design Cate	noru : Sds	CLSc	11 D =>	D

그림 3.19 내진설계 범주 결정 🖲

내진설계범주가 'D'이므로 구조물의 비정형성을 판정하여 해석법을 결정해야 합니다.⁹ 본 따라하기에서는 응답스펙트럼 해석법을 사용하겠습니다.

Sds와 Sd1의 내진 설계 범
 주 중에서 불리한 값을 선
 택합니다.

내진설계범주 판단으로 인하여 동적해석 대상이므로 동적지진하중(Response Spectrum Load)을 적용하겠습니다.

- 1. Menu > Response Spectrum Analysis > RS Functions 실행
- 2 Add 클릭
- 3 Design Spectrum 클릭
- 4. Design Spectrum에서 'KBC2016' 선택
- 5. Seismic Zone에서 '1' 확인
- 6. Zone Factor(S)에서 '0.22' 확인
- 7. Site Class에서 'Sc' 선택 🖗
- 8. Depth to MR에 '20'입력
- 9. Importance Factor(Ie)에 '1.2' 확인
- 10. Response Modification Coef.(R)에 '6' 선택
- 11. OK 버튼 클릭
- 12. Add/Modify/Show Response Spectrum Functions대화상자의 OK 버튼 클릭

Close

버튼 클릭

13. Response Spectrum Functions대화상자의

Function KBC2	on Name 2016			Spectral Data Type	n 💿 Velocity 💿 Displacement
Impor	t File Period (sec) 0.0000	Design Spectru Spectral Data (g) 0.0346		Scaling Scale Factor Maximum Value g	Gravity Graph Options 9.805 m/sec ² X-axis log scale Damping Ratio 0.05 Y-axis log scale
2 3 4 5 6 7 8 9 9 10 11 12 13 14 0escrip	0.10071 0.1200 0.1800 0.2400 0.3600 0.4200 0.4200 0.4800 0.5356 0.5400 0.6600 0.6600 tion KBC	0.0065 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0865 0.0858 0.0772 0.0702	G=0, 22	0.03784 0.063784 0.063784 0.063784 0.038784 0.038784 0.038784 0.038784 0.038784 0.038784 0.038784 0.038784 0.01 1.01 2.01 Period	Generate Design Spectrum Design Spectrum : KBC(2016) Design Spectral Response Acceleration Seismic Zone Zone Factor (S) 0,22 Site Class Sc Depth to MR 20 m Fa 1,18000 Sds 0,43267 g Fv 1,58000 Sd1 0,23173 g Importance Factor (le) 1,2 Response Modification 6 v
					Max, Period : 6 (Sec)

그림 3.20 Design Spectrum 자동 생성 대화상자

지진지역과지반종류가
 결정되면 단주기 및 1초주
 기 설계 스펙트럼 가속도
 (Sds, Sd1)가 자동으로 계
 삽됩니다.
 그림 3.20 참조

생성된 설계스펙트럼 데이터를 적용하여 응답스펙트럼 하중조건을 생성합니다. 본 예제에서는 전체좌표계 X축과 Y축 방향을 고려합니다.

- 1. Menu > Response Spectrum Analysis > RS Load Cases 실행
- 2. 그림 3.19에서 Load Case Name에 'RX' 입력
- 3. Direction 선택란에서 'X-Y' 확인[®]
- 4. Excitation Angle에 '0' 확인
- 5. Scale Factor에 '1' 확인
- 6. Function Name에서 KBC2016(0.05)에 '√'표시
- 7. Accidental Eccentricity에 '✓'표시 ♥
- 8. Operations 에서 Add 버튼 클릭
- 9. Load Case Name 입력란에 'RY' 입력
- 10. Excitation Angle 입력란에 '90' 입력
- 11. Operations 에서 Add 버튼 클릭

그림 3.21 응답스펙트럼 하중조건 입력

Direction X-Y는 X-Y평면 을 의미합니다.

 부재설계 및 비틀림비정
 형을 평가하기 위해서는
 응답스펙트럼 해석시 우
 발편심모멘트를 고려해야 합니다.

Steel 건축물 구조해석 및 설계

4. 구조해석 수행

구조해석에 필요한 모델의 기하형상과 Property, 경계조건 그리고 하중까지 모두 입력 되었으므로 구조해석을 수행합니다.

- 1. Perform Analysis를 클릭하여 구조해석 수행
- 2. 'SOLUTION TERMINATED' Massage를 확인

그림 4.1 구조해석 수행

MIDAS

Steel 건축물 구조해석 및 설계

5-1 반력 확인

구조해석 결과의 타당성을 검토하기 위해 먼저 반력을 확인합니다.

모델의 입력과정에서는 Display, Hidden 그리고 Table 등의 기능을 이용하여 입력내용 을 확인 할 수 있었습니다.

본 장에서는 구조해석의 결과로 구해진 반력의 확인을 통해 하중이나 요소와 절점의 입력과정에서 오류가 없는지 개략적으로 검토합니다.

- 1. 陆 Activate by Identifying을 클릭
- 2. 'Story'를 선택하고 List에서 '2F', '+Below' 선택
- Active
 버튼 클릭하고
 Close
 버튼 클릭
- 4. Main Menu에서 Results > Results > Reactions > Reaction Forces/Moments 클릭
- 5. Load Case/Combinations에서 'ST : DL' 선택[®]

6. Components에서 'FZ' 선택

- 7. Type of Display에서 Values와 Legend에 '✓' 표시
- 8. Values 우측의를 클릭하여 Decimal Points에 '2' 입력
- 9. OK 버튼 클릭
- 10. 2×B열 C1기둥 하부의 절점 26에서 최대반력 확인
- 11. Main Menu에서 Results > Tables > Result Tables > Reaction 선택
- 12. Loadcase/Combination의 DL(ST), LL(ST)에 ' \checkmark ' 표시
- 13. OK 버튼 클릭
- 14. Reaction Table의 최하단에서 각 하중조건별 반력 확인

 ST는 Static Load를 의미합 니다.

그림 5.1 중력방향 반력의 확인

									Gen	015 - [D:WTutorial#Steel(K8C2009)] - [Result-[Reaction]]	. e .
View Structure Node/E						Results					Ф нер 🖉 т
Reactions - 🧺 St	resses -	1.20	Bean/Cler	ment -	😂 Plate Lo	cal Aots 🛓 M	ode Shapes -	100	nflu Lines -	🔚 T.H. Results - 🔠 🥂 🧮 🛄 Unknown Load Factor	
Deformations - 🖓 Di	agram -	#	Local Dire	edion		N 16	odal Damping	Ratio. Arl	nflu. Surfaces	E TH Graph/Test - Column Shortkoing Share Share	
Combination Me Forces · H	Results	· H	Displacen	sent Participation F	actor	1. No.	odal Results of	RS 📫	Moving Tracer	E StagerStep Graph Graph for C.S. Force Ratio E Structural Safety Report Output Tables*	
Combination Results				Detail	_		Mode shape		doving Load	Time History Misc. Text Tables	
	FR (B	(b) M		≌ 43 (8) N	٤	- R		E 102 12	<u>≕ ⊠ ≧</u>	2 : C 4 6 9	
Tree Menu V X	4 /	R 24	art Page	Model View	Result (R	eaction] ×					> 10
Sectors Ditonac. Forces advises	1	Node	Load	Px (00)	by and	Fz 000	Mx (Mi-m)	Ny (N) m)	Mz (Mi-m)		- E
Heaction Forces/Moments -	•	21	DL	5.470360	19.510390	2552.140671	-37.149160	10.471349	0.000000		100
Load Cases/Combinations		22	DL	-0.080829	40.282387	5094.909685	-73.965783	-1.379135	0.000000		
ST:DL •		24	DL	-5.227018	19.502761	2603.223036	-37.134633	-10.736387	0.000000		
Step		25	DL	13.218847	-17.376780	3691,601951	29.511395	24.844744	0.000000		
Components		27	DL	-5.909277	-9.192952	5692.272113	79.913091	31,038587	0.000000		2
O MX O MY O MZ O MXYZ		28	DL	-12.039648 13.218647	-17.384989 17.376788	3741.782327 3691.601951	29.525336	-24.798923 24.644744	0.000000		2
Local (if defined)		30	DL	-8 290468	7.723555	6064.142610	-80.177114	-17.827676	0.000000		
Type of Display		31	DL	-5.909277	9.192952	5692.272113 3741.782327	-79.913091	31,038587	0.000000		
🗷 Values 🛄 📝 Legend 📖		33	DL	5.470880	-19.510390	2552.140671	37.149160	10.471349	0.000000		۲
Arrow Scale Factor: 1,000000		34	DL	-0.050529	-40 282387	5094.969685	73.965783	-1.379135	0.000000		E
Analus Clore		36	DL	-5.227018	-19.502761	2603.223036	37.134633	-10.736387	0.000000		
		3/	DL	11.675492	-1.642265	1770.557282	-3.090722	-8.774651	0.000000		
		21	u.	4.769017	17.000591	1290.230425	-33,905005	9.227057	0.000000		
		23	u	0.922652	37.004492	2616.021071	-67.946972	1.075899	0.000000		100
		24	LL	-4.625083	17.802310	1317.459051	-33.896856	-9.396036	0.000000		
		26	u	-6.319938	-14.330275	3197,261663	70.468292	-17.276121	0.000000		
		27	u	1.443295	-15,219513	2967.471455	70.309304	25.967464	0.000000		
		29	LL	12.421258	15.781320	1962.628925	-26.801789	23.567607	0.000000		4
		30	11	-5.319935	14.330275	3197,251682	-70.468292	-17.276121	0.000000		
		32	u	-11.712353	15.785925	1988.898550	-26.809610	-23.674462	0.000000		
		33	LL.	4.769017	-17.806591 -37.187121	1290.238425 2631.773538	33.905008 68.282312	9.227857	0.000000		
		35	u	0.922052	-37.004492	2616.021071	67.946972	1.075899	0.000000		
		36	u	-4,625083 5,319739	-17.802310	1317,459051 874,255302	33.896856	-9.399036	0.000000		4
		38	LL	5.319739	-1.521238	874.255302	2.882947	-5.608163	0.000000		
			1	Dx.	Fy	Fz					
			0	(01)	(870)	(M) 21667 116116					
			LL.	-0.000000	0.000000	37692.000000					Le la constante de la constante
		\Rea	ction((Global) (Rea	ction(Local)	K Reaction	Local-Surf	ace Spring)	1	()	· · · · · · · · · · · · · · · · · · ·
		on Wind	1.000						_		a v)
	7.5	요장 기는	- (H - 218)	1 프루젠트를 지적	2011/12						
		/14									
×	ल ब	EEA	Comma	nd Message 🖉 A	nalysis Message	/					
and the second se							_	_	_		

그림 5.2 Reaction Table

5-2 비정형 평가

내진설계범주 'D'인 경우에는 평면비정형 1,4,5 항목과 수직비정형 1~5항목을 반드 시 평가해야 합니다. 본 따라하기에서는 프로그램에서 평가 가능한 4가지 항목과 그 외 비정형 항목을 평가합니다.

평면비정형 1:비틀림 비정형 평가♥

비틀림 비정형을 평가하기 위해서 우발편심모멘트를 고려한 응답스펙트럼 하중조합 을 생성합니다. 우발편심모멘트는 각 방향별로 두가지를 고려해야 하므로 4가지의 하 중조합을 생성합니다.

- 1. Main Menu에서 Results > Combination > Load Combination 선택
- 2. General Tab 에서 Auto Generation,... 버튼 클릭
- 3. Code Selection에서 'Steel'를 선택
- 4. Design Code 'KBC-LSD16' 선택
- 5. Set Load Cases for Wind Direction,... 버튼 클릭
- 6. Set Load Cases for Wind Direction 대화상자에서 풍방향 하중과 풍직각방향하중
 확인 후
- 7. Automatic Generation of Load Combination 대화상자에서 OK 버튼 클릭
- 8. 생성된 Load Combination List의 Name에서 'gLCB1', 'gLCB2', 'gLCB3', 'gLCB4' 확인 *

No	Nomo	Activo	Tune	Description A		Add Beplace Add Envelope	Faster
*	Name	Acuve	туре	Description			actor
						Code Selection	
						Cold Formed Steel	
						O Aluminum	
						Design Code : KBC-LSD16 🗸	
						C Scale Up of Response Spectrum Load Case	
						Scale Up Factor : 1 RX -	
				=		Factor Load Case Add	
						1,000 BX Modify	
						1,000 RY Delete	
						Wind Load Combinations	
						Set Load Cases for Wind Direction,	
						Manipulation of Construction Stage Load Case	
						ST : Static Load Case	
						CS : Construction Stage Load Case	
						ST Unly CS Only ST+CS	
4				-		Consider Orthogonal Effect	
						Set Load Cases for Orthogonal Effect,	
Conu		-	Auto Gonoro	tion Parced Shor		() 100 : 30 Rule	
Coby				auon opread Silee	20	SHSS(Square-Hoot-of-Sum-of-Squares)	
File Name:	D:₩Steel(KB	C2016), lop		Browse		Generate Additional Load Combinations	ose
						In or opecial seismic Load	

비틀림 비정형 평가시 응
 답스펙트럼 해석에 의한
 우발편심모멘트를 고려하
 기 위하여 General Tab에
 서 그림 5.3과 같이 4가지
 하중조합을 자동 생성합
 니다.

Set Load Cases for Wind Direction Wind Loads Group Middle Low Rise Building High Rise Building Wind Direction Along Wind Load Case : WX Across Wind Load Case : WX Torsional Wind Load Case : None Factor GD : 2.2 k : 0.55 Group No Along Across Torsion GD k 1 WX WX(A) None 2 WY WY(A) None 2 WY WY(A) None Corsion Wind Direction : (+),(-) Direction v	Set Load Cases for Wind Direction
Middle Low Rise Building High Rise Building Wind Direction Along Wind Load Case : WX. Across Wind Load Case : WX.(A) Torsional Wind Load Case : None Factor GD : 2.2 k : 0.55 Group No Along Across Torsion GD k 1 WX WX(A) None 2 WY WY(A) None 2 WY WY(A) None Corriginal Wind Direction : (+),(-) Direction	Set Load Cases for Wind Direction
Wind Direction Along Wind Load Case : WX • • • • • • • • • • • • • • • • • •	Middle Low Rise Building: O High Rise Building
Along Wind Load Case : WX • • • • • • • • • • • • • • • • • •	Wind Direction
Across Wind Load Case : WX(A) Torsional Wind Load Case : None Factor GD : 2.2 K : 0.55 Group No Along Across Torsion GD k WX WX(A) None 2 WY WY(A) None 2 WY WY(A) None C WY	Along Wind Load Case : WX 🔷 📖
Torsional Wind Load Case : None Factor GD : 2.2 k : 0.55 Group No Along Across Torsion GD k 1 WX WX(A) None 2 WY WY(A) None - Add Modify Delete Torsion Wind Direction : (+),(-) Direction V	Across Wind Load Case : WX(A) 🗸
Factor GD: 2.2 k: 0.55 Group No Along Across Torsion GD k 1 WX WX(A) None - - 2 WY WY(A) None - - 4dd Modify Delete Torsion Vind Vind OK Cancel OK Cancel	Torsional Wind Load Case : None 💌
GD: 2.2 k: 0.55 Group No Along Across Torsion GD k 1 WX WX(A) None 2 WY WY(A) None 4 Add Modify Delete Torsion Wind Direction : (+),(-) Direction V	Factor
Group No Along Across Torsion GD k 1 WX WX(A) None 2 WY WY(A) None 4 Add Modify Delete Torsion Wind Direction : (+),(-) Direction -	GD: 2.2 k: 0.55
Group No Along Across Torsion GU k 1 WX WX(A) None 2 WY WY(A) None 4 MY WY(A) None Add Modify Delete Torsion Wind Direction : (+),(-) Direction ▼	
2 WY WY(A) None 2 WY WY(A) None Add Modify Delete Torsion Wind Direction : (+),(-) Direction -	aroup No Along Across Torsion GD K
Add Modify Delete Torsion Wind Direction : (+),(-) Direction •	2 WY WY(A) None
Add Modify Delete Torsion Wind Direction : (+),(-) Direction •	
Add Modify Delete Torsion Wind Direction : (+),(-) Direction • OK Cancel	
Add Modify Delete Torsion Wind Direction : (+),(-) Direction •	
Add Modify Delete Torsion Wind Direction : (+),(-) Direction -	
Torsion Wind Direction : (+),(-) Direction -	Add Modify Delete
Torsion Wind Direction : (+),(-) Direction -	
OK Cancel	Torsion Wind Direction : (+),(-) Direction 👻
UN LAUGE	
	Caliber

	No	Namo	Active	Туре	Description		LoadCase	Factor
•	1	qLCB1	Active	Add	RX(RS)+RX(ES)	•	RX(RS)	1.0000
	2	qLCB2	Active	Add	RX(RS)-RX(ES)		RX(ES)	1.0000
	3	qLCB3	Active	Add	RY(RS)+RY(ES)	*		
ΞĹ	4	gLCB4	Active	Add	RY(RS)-RY(ES)			
	5	WINDC	Inactive	Add	WX + WX(A)			
	6	WINDC	Inactive	Add	WX - WX(A)			
	7	WINDC	Inactive	Add	WY + WY(A)			
	8	WINDC	Inactive	Add	WY - WY(A)			
	9	gLCB9	Active	Add	1.4(D)			
	10	gLCB10	Active	Add	1.2(D) + 1.6(L)			
	11	gLCB11	Active	Add	1.2(D) + 1.3WINDCOM			
	12	gLCB12	Active	Add	1.2(D) + 1.3WINDCOM			
	13	gLCB13	Active	Add	1.2(D) + 1.3WINDCOM			
	14	gLCB14	Active	Add	1.2(D) + 1.3WINDCOM			
	15	gLCB15	Active	Add	1.2(D) - 1.3WINDCON			
	16	gLCB16	Active	Add	1.2(D) - 1.3WINDCON			
	17	gLCB17	Active	Add	1.2(D) - 1.3WINDCON			
	18	gLCB18	Active	Add	1.2(D) - 1.3WINDCON			
	19	gLCB19	Active	Add	1.2(D) + 1.0EX + 1.0(l			
	20	gLCB20	Active	Add	1.2(D) + 1.0EY + 1.0(
	21	gLCB21	Active	Add	1.2(D) - 1.0EX + 1.0(L -			
•								

그림 5.3 비틀림 비정형을 평가하기 위한 하중조합 생성

미리 생성해 두었던 우발편심모멘트를 고려한 응답스펙트럼 하중조합을 이용하여 비 틀림 비정형을 평가합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Torsional Irregularity Check 선택
- 2. Load Case/Load Combination에서 gLCB1, gLCB2, gLCB3, gLCB4에 '✔' 표시

후 OK 버튼 클릭

T			1 minut	0	Average Valu	e of Extreme Points	Max	imum Value	
	Load Case	Story	(m)	(m)	Story Drift (m)	1.2*Story Drift (m)	Node	Story Drift (m)	Remai
	gLCB1	15F	59.80	4.20	0.0029	0.0035	331	0.0032	Regular
Т	gLCB1	14F	55.60	4.20	0.0035	0.0041	307	0.0038	Regular
٦	gLCB1	13F	51.40	4.20	0.0038	0.0045	283	0.0041	Regular
٦	gLCB1	12F	47.20	4.20	0.0040	0.0048	259	0.0044	Regular
٦	gLCB1	11F	43.00	4.20	0.0041	0.0050	235	0.0047	Regular
٦	gLCB1	10F	38.80	4.20	0.0041	0.0049	211	0.0046	Regular
٦	gLCB1	9F	35.00	3.80	0.0036	0.0043	187	0.0041	Regular
٦	gLCB1	8F	31.20	3.80	0.0036	0.0043	163	0.0042	Regular
٦	gLCB1	7F	27.40	3.80	0.0035	0.0042	139	0.0041	Regular
٦	gLCB1	6F	23.60	3.80	0.0034	0.0041	115	0.0041	Regular
٦	gLCB1	5F	19.80	3.80	0.0033	0.0040	91	0.0040	Irregular
٦	gLCB1	4F	16.00	3.80	0.0031	0.0038	67	0.0038	Irregular
1	gLCB1	3F	11.00	5.00	0.0039	0.0047	43	0.0049	Irregular
1	gLCB1	2F	6.00	5.00	0.0035	0.0042	1	0.0045	Irregular
1	gLCB1	1F	0.00	6.00	0.0048	0.0057	21	0.0064	Irregular
1	gLCB2	15F	59.80	4.20	0.0029	0.0035	343	0.0032	Regular
٦	gLCB2	14F	55.60	4.20	0.0035	0.0041	319	0.0038	Regular
٦	gLCB2	13F	51.40	4.20	0.0038	0.0045	295	0.0041	Regular
٦	gLCB2	12F	47.20	4.20	0.0040	0.0048	271	0.0044	Regular
٦	gLCB2	11F	43.00	4.20	0.0041	0.0050	247	0.0047	Regular
٦	gLCB2	10F	38.80	4.20	0.0041	0.0049	223	0.0046	Regular
٦	gLCB2	9F	35.00	3.80	0.0036	0.0043	199	0.0041	Regular
	gLCB2	8F	31.20	3.80	0.0036	0.0043	175	0.0042	Regular
1	gLCB2	7F	27.40	3.80	0.0035	0.0042	151	0.0041	Regular
	gLCB2	6F	23.60	3.80	0.0034	0.0041	127	0.0041	Regular
	gLCB2	5F	19.80	3.80	0.0033	0.0040	103	0.0040	Irregular
1	gLCB2	4F	16.00	3.80	0.0031	0.0038	79	0.0038	Irregular
1	gLCB2	3F	11.00	5.00	0.0039	0.0047	55	0.0049	Irregular
٦	gLCB2	2F	6.00	5.00	0.0035	0.0042	13	0.0045	Irregular
1	gLCB2	1F	0.00	6.00	0.0048	0.0057	33	0.0064	Irregular
1	qLCB3	15F	59.80	4.20	0.0020	0.0024	334	0.0025	Irregular

그림 5.4 RX(RS±ES), RY(RS±ES) 방향별 비틀림 비정형 평가 결과

비틀림 비정형 평가 결과 Maximum Story Drift값이 1.2*Average Story Drift of Extreme Points보다 크기 때문에 본 예제는 비틀림 비정형 구조물에 해당합니다.

수직비정형 1 : 강성 비정형 평가®

- 1. Main Menu에서 Results > Tables > Result Tables > Story > Stiffness Irregularity Check(Soft Story) 선택
- Loadcase/Load Combination 에서 RX(RS), RY(RS)에 '√' 표시 후
 UK
 버튼 클릭
- 3. Select Calculation Method의 Story Drift Method에서 'Drift at the Center of Mass' 확인
- 4. Story Stiffness Method 에서 '1 / Story Drift Ratio' 확인 후 OK 버튼 클릭
- 5. 'Stiffness Irregularity(X) Tab', 'Stiffness Irregularity(Y) Tab' 확인

강성비정형 평가 결과 RY(RS)의 Story Stiffness Ratio가 1.0보다 크기 때문에 본 예제 는 강성비정형에 해당되지 않습니다. 만약 Story Stiffness Ratio가 1.0보다 작더라도 Story Drift Angle Ratio가 1.3보다 작다면 강성비정형에 해당하지 않습니다.

- Story Stiffness Ratio : Max {(Story Stiffness / 0.7Ku1), (Story Stiffness /0.8Ku123)}

- Story Drift Angle Ratio : Story Drift / 상부층의 Story Drift

<	🚺 Start F	Page 🛛 🕼	MIDAS/Gen	🕼 Result	-[Reaction]	🕽 Result-[Tors	ional Irregula	rity Check]	Result-[St	iffness Irregu	larity Check] \times	
			Laval	Stony Haight	Steps Drift	Story Shear	Change	Upper Sto	ry Stiffness	Story	Steps Drift Angle	
	Load Case	Story	(m)	(m)	(m)	Force (kN)	Stiffness	0.7Ku1	0.8Ku123	Stiffness Ratio	Ratio	Remark
	RX(RS)	15F	59.80	4.20	0.0029	261.61	1434.75	0.00	0.00	0.000	0.000	Regular
	RX(RS)	14F	55.60	4.20	0.0034	412.98	1225.46	1004.33	0.00	1.220	1.171	Regular
	RX(RS)	13F	51.40	4.20	0.0037	506.79	1129.04	857.82	0.00	1.316	1.085	Regular
	RX(RS)	12F	47.20	4.20	0.0039	567.42	1069.63	790.33	1010.47	1.059	1.056	Regular
	RX(RS)	11F	43.00	4.20	0.0041	612.31	1032.03	748.74	913.10	1.130	1.036	Regular
	RX(RS)	10F	38.80	4.20	0.0040	650.94	1051.43	722.42	861.52	1.220	0.982	Regular
	RX(RS)	9F	35.00	3.80	0.0035	690.52	1079.78	736.00	840.83	1.284	0.974	Regular
	RX(RS)	8F	31.20	3.80	0.0035	733.18	1080.74	755.85	843.53	1.281	0.999	Regular
	RX(RS)	7F	27.40	3.80	0.0034	775.05	1126.45	756.52	856.52	1.315	0.959	Regular
	RX(RS)	6F	23.60	3.80	0.0033	817.90	1145.75	788.52	876.53	1.307	0.983	Regular
	RX(RS)	5F	19.80	3.80	0.0032	864.87	1186.53	802.03	894.12	1.327	0.966	Regular
	RX(RS)	4F	16.00	3.80	0.0030	918.28	1269.41	830.57	922.33	1.376	0.935	Regular
	RX(RS)	3F	11.00	5.00	0.0036	981.18	1374.36	888.59	960.45	1.431	0.924	Regular
	RX(RS)	2F	6.00	5.00	0.0031	1038.34	1620.34	962.06	1021.42	1.586	0.848	Regular
	RX(RS)	1F	0.00	6.00	0.0038	1086.05	1578.82	1134.24	1137.10	1.388	1.026	Regular
4 1	∖Stiffne	ss Irregi	ularity(X)	🖌 Stiffnes	s Irregularity	(Y) /				•		

4 /	🚺 Start F	Page 🚺 🕼	MIDAS/Gen	🕼 Result	-[Reaction]	🕼 Result-[Tors	ional Irregula	rity Check]	Result-[St	iffness Irregu	larity Check] \times	
			Laura	Olar Halahi	Ohen Delf	Story Shear	01	Upper Sto	ory Stiffness	Story	Olary Drift Arrely	
	Load Case	Story	(m)	(m)	(m)	Force (kN)	Stiffness	0.7Ku1	0.8Ku123	Stiffness Ratio	Ratio	Remark
	RY(RS)	15F	59.80	4.20	0.0020	275.74	2113.01	0.00	0.00	0.000	0.000	Regular
	RY(RS)	14F	55.60	4.20	0.0025	454.57	1712.16	1479.11	0.00	1.158	1.234	Regular
	RY(RS)	13F	51.40	4.20	0.0028	582.46	1524.24	1198.51	0.00	1.272	1.123	Regular
	RY(RS)	12F	47.20	4.20	0.0030	672.74	1412.34	1066.97	1426.51	0.990	1.079	Regular
	RY(RS)	11F	43.00	4.20	0.0031	741.01	1344.41	988.64	1239.66	1.084	1.051	Regular
	RY(RS)	10F	38.80	4.20	0.0031	796.00	1365.87	941.08	1141.60	1.196	0.984	Regular
	RY(RS)	9F	35.00	3.80	0.0027	843.79	1398.67	956.11	1099.36	1.272	0.977	Regular
	RY(RS)	8F	31.20	3.80	0.0027	892.13	1397.81	979.07	1095.72	1.276	1.001	Regular
	RY(RS)	7F	27.40	3.80	0.0026	943.36	1444.04	978.47	1109.96	1.301	0.968	Regular
	RY(RS)	6F	23.60	3.80	0.0026	997.90	1454.23	1010.83	1130.81	1.286	0.993	Regular
	RY(RS)	5F	19.80	3.80	0.0026	1055.33	1484.55	1017.96	1145.62	1.296	0.980	Regular
	RY(RS)	4F	16.00	3.80	0.0024	1117.79	1596.17	1039.18	1168.75	1.366	0.930	Regular
	RY(RS)	3F	11.00	5.00	0.0030	1188.35	1664.46	1117.32	1209.32	1.376	0.959	Regular
	RY(RS)	2F	6.00	5.00	0.0028	1248.64	1782.74	1165.12	1265.38	1.409	0.934	Regular
	RY(RS)	1F	0.00	6.00	0.0040	1294.32	1483.54	1247.92	1344.90	1.103	1.202	Regular
4 1	Stiffness Irregularity(X) Stiffness Irregularity(Y)											

그림 5.5 강성 비정형 평가결과 Table

수직비정형 2 : 중량 비정형 평가®

- 1. Main Menu에서 Results > Tables > Result Tables > Story > Weight Irregularity Check 선택
- Loadcase/Load Combination 에서 RX(RS), RY(RS)에 '√' 표시 후 OK
 버튼 클릭
- Select Calculation Method의 Story Drift Method에서 'Drift at the Center of Mass' 선택 후 OK 버튼 클릭
- 4. 'Weight Irregularity(X) Tab', 'Weight Irregularity(Y) Tab' 확인

중량비정형 평가 결과 Story Weight Ratio가 1.0보다 작으면 중량비정형이 아닙니다. 만약 Story Weight Ratio가 1.0보다 크더라도 Story Drift Angle Ratio가 1.3보다 작은 경 우는 중량비정형에 해당하지 않습니다. 본 예제는 Story Weight Ratio가 1.0보다 작으 며 Story Drift Angle Ratio가 1.3보다 작기 때문에 중량비정형이 아닙니다.

- Story Weight Ratio : Max {(Story Weight / 1.5M(U)), (Story Weight / 1.5M(L))}

- Story Drift Angle Ratio : Story Drift / 상부층의 Story Drift

< /	🕼 Start F	Page 🛛 🗖	MIDAS/Gen	🕅 Result	t-[Weight Irregular	ity Check] ×				
			L avail	Otras Haisht	Oliver Ministry	Adjacent S	tory Weight	Ober 11/2 inht	Ohan Daith Anala	
	Load Case	Story	(m)	(m)	(kN)	1.5M(Upper) (kN)	1.5M(Lower) (kN)	Ratio	Ratio	Remark
	RX(RS)	Roof	64.00	0.00	5798.251	0.000	7157.541	0.810	0.000	Regular
	RX(RS)	15F	59.80	4.20	4771.694	8697.377	7157.541	0.667	0.000	Regular
	RX(RS)	14F	55.60	4.20	4771.694	7157.541	7157.541	0.667	1.171	Regular
	RX(RS)	13F	51.40	4.20	4771.694	7157.541	7157.541	0.667	1.085	Regular
	RX(RS)	12F	47.20	4.20	4771.694	7157.541	7174.674	0.667	1.056	Regular
	RX(RS)	11F	43.00	4.20	4783.116	7157.541	7175.708	0.668	1.036	Regular
	RX(RS)	10F	38.80	4.20	4783.805	7174.674	7159.609	0.668	0.982	Regular
	RX(RS)	9F	35.00	3.80	4773.073	7175.708	7191.323	0.665	0.974	Regular
	RX(RS)	8F	31.20	3.80	4794.215	7159.609	7223.037	0.670	0.999	Regular
	RX(RS)	7F	27.40	3.80	4815.358	7191.323	7223.037	0.670	0.959	Regular
	RX(RS)	6F	23.60	3.80	4815.358	7223.037	7250.777	0.667	0.983	Regular
	RX(RS)	5F	19.80	3.80	4833.851	7223.037	7377.143	0.669	0.966	Regular
	RX(RS)	4F	16.00	3.80	4918.095	7250.777	6643.690	0.740	0.935	Regular
	RX(RS)	3F	11.00	5.00	4429.127	7377.143	6743.878	0.657	0.924	Regular
	RX(RS)	2F	6.00	5.00	4495.919	6643.690	395.282	11.374	0.848	Regular
	RX(RS)	1F	0.00	6.00	263.521	6743.878	0.000	0.039	1.026	Regular
4	\Weight	t Irregula	arity(X)	Weight Irre	egularity(Y) 🖊				Image: Second	

						Adjacent S	tory Weight			
Lo	oad Case	Story	Level (m)	Story Height (m)	Story Weight (kN)	1.5M(Upper) (kN)	1.5M(Lower) (kN)	Story Weight Ratio	Story Drift Angle Ratio	Remark
R١	Y(RS)	Roof	64.00	0.00	5798.251	0.000	7157.541	0.810	0.000	Regular
R	Y(RS)	15F	59.80	4.20	4771.694	8697.377	7157.541	0.667	0.000	Regular
R	Y(RS)	14F	55.60	4.20	4771.694	7157.541	7157.541	0.667	1.234	Regular
R	Y(RS)	13F	51.40	4.20	4771.694	7157.541	7157.541	0.667	1.123	Regular
R	Y(RS)	12F	47.20	4.20	4771.694	7157.541	7174.674	0.667	1.079	Regular
R	Y(RS)	11F	43.00	4.20	4783.116	7157.541	7175.708	0.668	1.051	Regular
R١	Y(RS)	10F	38.80	4.20	4783.805	7174.674	7159.609	0.668	0.984	Regular
R	Y(RS)	9F	35.00	3.80	4773.073	7175.708	7191.323	0.665	0.977	Regular
R	Y(RS)	8F	31.20	3.80	4794.215	7159.609	7223.037	0.670	1.001	Regular
R١	Y(RS)	7F	27.40	3.80	4815.358	7191.323	7223.037	0.670	0.968	Regular
R	Y(RS)	6F	23.60	3.80	4815.358	7223.037	7250.777	0.667	0.993	Regular
R١	Y(RS)	5F	19.80	3.80	4833.851	7223.037	7377.143	0.669	0.980	Regular
R	Y(RS)	4F	16.00	3.80	4918.095	7250.777	6643.690	0.740	0.930	Regular
R١	Y(RS)	3F	11.00	5.00	4429.127	7377.143	6743.878	0.657	0.959	Regular
R	Y(RS)	2F	6.00	5.00	4495.919	6643.690	395.282	11.374	0.934	Regular
R	Y(RS)	1F	0.00	6.00	263.521	6743.878	0.000	0.039	1.202	Regular

그림 5.6 중량비정형 평가결과 Table

수직비정형 5 : 강도 비정형 평가®

- 1. Main Menu에서 Results > Tables > Result Tables > Story > Capacity Irregularity Check(Weak Story) 선택
- 2. 'Capacity Irregularity Tab' 확인

강도비정형 평가 결과 Story Shear Strength Ratio가 0.8보다 크므로 본 예제는 강도비정 형이 아닙니다.

-Story Shear Strength Ratio : Story Shear Strength / Upper Story Shear Strength

Angle은 요소의 강도를 계산하는 기준이 되는 방향이며 일반적으로 Angle 1을 하중이 작용하는 방향으로 지정하면 입력된 하중과 층 전단강도가 일치하게 되어서 그 때의 각 층별 강도를 확인할 수 있습니다.

< /	Image: Start Page in MIDAS/Gen in the source of t												
	Story	Level (m)	Story Height (m)	Angle1 ([deg])	Story Shear Strength1 (kN)	Upper Story Shear Strength1 (kN)	Story Shear Strength Ratio1	Remark1	Angle2 ([deg])	Story Shear Strength2 (kN)	Upper Story Shear Strength2 (kN)	Story Shear Strength Ratio2	Remark2
	Angle = 0 [Deg]												
	Input angle and press 'Apply' button to change angle.				Apply								
	15F	59.80	4.20	0.00	79560.4269	0.0000	0.0000	Regular	90.00	43424.2669	0.0000	0.0000	Regular
	14F	55.60	4.20	0.00	79560.4269	79560.4269	1.0000	Regular	90.00	43424.2669	43424.2669	1.0000	Regular
	13F	51.40	4.20	0.00	79560.4269	79560.4269	1.0000	Regular	90.00	43424.2669	43424.2669	1.0000	Regular
	12F	47.20	4.20	0.00	79560.4269	79560.4269	1.0000	Regular	90.00	43424.2669	43424.2669	1.0000	Regular
	11F	43.00	4.20	0.00	79560.4269	79560.4269	1.0000	Regular	90.00	43424.2669	43424.2669	1.0000	Regular
	10F	38.80	4.20	0.00	87794.2623	79560.4269	1.1035	Regular	90.00	48420.5023	43424.2669	1.1151	Regular
	9F	35.00	3.80	0.00	88100.0439	87794.2623	1.0035	Regular	90.00	48726.2839	48420.5023	1.0063	Regular
	8F	31.20	3.80	0.00	88100.0439	88100.0439	1.0000	Regular	90.00	48726.2839	48726.2839	1.0000	Regular
	7F	27.40	3.80	0.00	108593.4839	88100.0439	1.2326	Regular	90.00	56394.2839	48726.2839	1.1574	Regular
	6F	23.60	3.80	0.00	108593.4839	108593.4839	1.0000	Regular	90.00	56394.2839	56394.2839	1.0000	Regular
	5F	19.80	3.80	0.00	108593.4839	108593.4839	1.0000	Regular	90.00	56394.2839	56394.2839	1.0000	Regular
	4F	16.00	3.80	0.00	124781.4839	108593.4839	1.1491	Regular	90.00	65425.4839	56394.2839	1.1601	Regular
	3F	11.00	5.00	0.00	125943.2312	124781.4839	1.0093	Regular	90.00	66587.2312	65425.4839	1.0178	Regular
	2F	6.00	5.00	0.00	141421.2312	125943.2312	1.1229	Regular	90.00	75192.4312	66587.2312	1.1292	Regular
	1F	0.00	6.00	0.00	140624.1395	141421.2312	0.9944	Regular	90.00	74395.3395	75192.4312	0.9894	Regular
4 >	Capacity Irregularity												

그림 5.7 강도 비정형 평가결과 Table

그 외 비정형 평가

비틀림 비정형을 평가하기 위해서 우발편심모멘트를 고려한 응답스펙트럼 하중조합 을 생성합니다. 우발편심모멘트는 각 방향별로 두가지를 고려해야 하므로 4가지의 하 중조합을 생성합니다.

midas Gen에서는 앞서 설명한 프로그램으로 판단 가능한 4가지 비정형평가를 자동으 로 수행합니다. 그 외의 6가지 비정형평가 항목에 대해서도 평가해야 합니다.

<u>평면비정형 2 - 요철형 평면</u>

- 내용 : 돌출한 부분의 치수가 해당하는 방향의 평면치수의 15%를 초과하면 요철형 평면을 갖는 것으로 간주한다.

- 평가 : 본 예제는 양방향 모두 평면치수의 15%를 초과하는 요철형 평면이 없으므로 정형입니다. (Regular).

그림 5.8 요철형 평면 평가

<u>평면비정형 3 - 격막의 불연속</u>

- 내용 : 격막에서 잘려나간 부분이나 뚫린 부분이 전체 격막면적의 50%를 초과 하거나 인접한 층간 격막 강성의 변화가 50%를 초과하는 급격한 불연속이나 강성의 변화가 있는 격막.

- 평가 : 본 예제는 격막에서 잘려나간 부분이나 뚫린 부분이 없고, 전층 격막 강성의 변화가 없기 때문에 격막의 불연속에 해당하지 않습니다 (Regular).

<u>평면비정형 4 - 면외 어긋남</u>

- 내용 : 수직부재의 면외 어긋남 등과 같이 횡력전달 경로에 있어서의 불연속성.

-평가 : 본 예제는 면외 어긋남에 의한 횡하중 전달 경로가 모두 연속이므로 정형에 해당됩니다 (Regular).

<u> 평면비정형 5 - 비평행 시스템</u>

- 내용 : 횡력저항 수직요소가 전체 횡력저항 시스템에 직교하는 주축에 평행하지 않거나 대칭이 아닌 경우.

-평가 : 횡력저항 수직요소가 주축에 평행하고, 평면이 대칭이므로 비평행 시스템이 아닙니다. (Regular).

<u> 수직비정형 3 - 기하학적 비정형</u>

- 내용 : 횡력 저항시스템의 수평치수가 인접층 치수의 130%를 초과할 경우 기하학적 비정형이 존재하는 것으로 간주한다.

- 평가 : 중간 모멘트골조를 가진 이중골조 시스템으로 정형 평면이고, 수직적인 변화가 없기 때문에 기하학적 비정형이 아닙니다. (Regular).

그림 5.9 기하학적 비정형 평가

<u>수직비정형 4 – 면내 어긋남(</u>횡력저항 수직 저항요소의 비정형)

- 내용 : 횡력 저항요소의 면내 어긋남이 그 요소의 길이보다 크거나, 인접한 하부층 저항요소에 강성감소가 일어나는 경우 수직 저항요소의 면내 불연속에 의한 비정형 있는 것으로 간주한다.

- 평가 : 코어의 Brace가 최하부층까지 연속되어 있지 있으므로 정형에 해당됩니다 (Regular).

비정형 평가 결과

번호	유 형	판 정	비고
H-1	비틀림 비정형	Irregular	등가정적 해석시 비틀림 증폭계수 적용
Н -2	요철형 평면	Regular	-
Н -3	격막의 불연속	Regular	-
Н -4	면외 어긋남	Irregular	횡력저항 불연속 수직부재의 특별하중조합적용
Н -5	비평행 시스템	Irregular	비정형 여부에 관계없이, 내진설계범주 D이기 때문에 Orthogonal Effect 고려
V-1	강성 비정형	Regular	-
V-2	중량 비정형	Regular	-
V-3	기하학적 비정형	Regular	-
V-4	면내 어긋남	Irregular	횡력저항 불연속 수직부재의 특별하중조합적용
V-5	강도 비정형	Regular	-

표 5.1 비정형 평가 결과

해석법 결정

본 구조물은 내진설계범주가 'D'이고 5층 이상의 비틀림 비정형구조물이므로 동적해석법으로 구조물을 해석해야 합니다. (KBC 2016-표 0306.4.6 참조)

5-3 응답스펙트럼 해석결과 검토

본 따라하기는 동적해석이 요구되기 때문에 응답스펙트럼 해석결과에 대해 검토해 보겠습니다.

고유치 해석결과 검토

구조물의 동적특성과 모드별 유효질량을 검토하여 고유치 해석의 타당성과 응답스펙 트럼해석의 적용여부를 검토합니다.

- 1. Model View를 제외한 모든 창 종료
- 2. Main Menu에서 Results > Mode Shape > Vibration Mode Shapes 실행
- 4. Record Activation Dialog에서 OK 버튼 클릭
- 5. 테이블에서 X, Y 방향 주기 확인

먼저 각 방향별 1차 주모드를 확인합니다.

MODAL PARTICIPATION MASSES(%) PRINTOUT에서 해당 모드의 각 방향별 참여질량을 비교 하면 Mode별 방향성분을 확인할 수 있습니다.

즉 Mode 1에서는 Z축에 대한 회전성분에서 질량이 대부분 반응을 하고 있고, Mode 2는 X방향 변위성분, 그리고 Mode 3 은 Y방향 변위성분에 대해서 질량이 반응을 하고 있는 것으로 보아 각 방향별 주 모드를 판단할 수 있습니다.

Mode 15에서 각 방향별 참여질량의 합을 보면 세 방향 모두 90%이상의 질량이 유효 하므로, 본 예제의 응답스펙트럼 해석에는 구조물의 동적 특성이 거의 모두 반영되었 다고 볼 수 있습니다.

Mode No	지배방향	참여질량(%)	주기(sec)
1	ROTN-Z	86.44	3.4233
2	TRAN-X	76.77	2.9439
3	TRAN-Y	79.59	2.3923.

표 5.2 방향별 질량 참여

1	🚺 Sta	irt Page	MIDA	AS/Gen	Result-[Eigenvalue	Mode] ×							
	Node Mode UX		x	UY UZ			F	x	R	RY		RZ		
	ΕΙ							UE ANA	LYSIS					
		Mode	Frequency				Per	riod	Tala			· · · · · · · · · · · · · · · · · · ·		
		No	(rad	/sec)	(cycle	e/sec)	(5	ec)	Tolei	ance		s		
		1		1.8354		0.2921		3.4233	0	0000e+000		s		
		2		2.1343	13 0.3397			2.9439	0	0000e+000		9		
		3		2.6264		0.4180		2.3923	0	0000e+000		e		
		4		5.3373		0.8495		1.1772	7	.9991e-129		2 /2		
		5	6.6350			1.0560		0.9470	2	.6163e-119				
		6		7.8635		1.2515		0.7990	1	.5847e-112				
		7		9.9435		1.5826		0.6319	1	.6605e-105		5		
		8		13.0873		2.0829		0.4801	3	.0810e-093		5 25		
	_	9		14.6413	2.3302 2.4167		0.4291 8.6545e-090 0.4138 2.1511e-087		8.6545e-090			5 25		2
		10		15.1848										
		11		19.6372		3.1254		0.3200	7	.0321e-078				
			19.7141		3.1376		0.3187		5.8390e-077			s		
		13		22.5021		3.5813		0.2792	3	.8752e-073		· · · · · · · · · · · · · · · · · · ·		
		14		24.8672		3.9577		0.2527	8	.6949e-071		· · · · · · · · · · · · · · · · · · ·		
		15		26.2976		4.1854		0.2389	9	.5571e-067		5 - 75		
							L PARTICIPA	TION MASS	ES PRINTOU	ſ				
		Mode	TRA	AN-X	TRAN-Y		TRAN-Z		RO	TN-X	ROT	N-Y	ROT	N-Z
		No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
		1	0.0000	0.0000	0.0800	0.0800	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86.4359	86.4359
		2	76.7709	76.7709	0.0000	0.0800	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	86.4359
		3	0.0000	76.7709	79.5944	79.6744	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0988	86.5347
		4	0.0000	76.7709	0.0153	79.6897	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	9.3141	95.8488
		5	15.9798	92.7508	0.0000	79.6897	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	95.8488
		6	0.0000	92.7508	14.4464	94.1361	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0104	95.8592
		7	0.0000	92.7508	0.0172	94.1533	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2.1137	97.9729
		8	4.1063	96.8571	0.0000	94.1533	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	97.9729
		9	0.0000	96.8571	0.0089	94.1622	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.8618	98.8348
		10	0.0000	96.8571	3.2304	97.3926	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0017	98.8365
		11	0.0000	96.8571	0.0001	97.3927	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.5211	99.3575
		12	1.5155	98.3725	0.0000	97.3927	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	99.3575
		13	0.0000	98.3725	1.1779	98.5706	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	99.3576
		14	0.0000	98.3725	0.0001	98.5707	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.2716	99.6292
		15	0.8413	99.2139	0.0000	98.5707	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	99.6292

그림 5.10 고유치 해석결과의 확인

테이블을 통해서 확인한 진동모드를 그래픽 화면으로 확인해 보겠습니다.

- 1. 그림 5.11의 **●**에서 Model View 클릭
- 2. 🔲 Iso View 버튼 클릭
- 3. [▶] Active All, 📑 Initial View 클릭
- 4. Main Menu에서 Results > Mode Shape > Mode Shapes > Vibration Mode Shapes 클릭
- 5. Load Cases(Mode Numbers)에서 'Mode 1' 확인
- 6. Type of Display에서 Md. Shp. 우측의 🛄 버튼 클릭
- 7. Mode Shape Scale Factor에 '3.0' 입력 후 OK 버튼 클릭
- 8. Animate 우측의 🛄 클릭
- 9. Animation Mode에 'Repeat Full Cycle' 선택
- 10. OK
- 11. Contour 항목에 체크
- 12. Apply 버튼 클릭
- 13. 그림 5.11의 @에서 🚾 Record 클릭
- 14. Mode 형상을 확인
- 15. 그림 5.11의 ❸에서 🔳 Stop 클릭
- 16. 그림 5.11의 @에서 📆 Close 클릭

MIDAS
보정계수(Cm : Modigicaiton Factor) 산정

응답스펙트럼 해석을 통해 구한 구조물의 밑면전단력을 등가정적해석의 밑면전단력 과 비교하여, 그 차이를 보정하기 위한 보정계수를 산정합니다.

등가정적 해석법에서의 밑면전단력은 midas Gen의 등가정적 지진하중 자동연산기능 을 이용하여 산정합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Story Shear(Response Spectrum Analysis) 선택
- Record Activation Dialog에서 RX(RS), RY(RS)에 '√' 표시 후 OK
 버튼 클릭
- 3. RX 조건에서 밑면전단력 '1086.0kN', RY 조건에서 '1294.3kN' 확인[®] (그림 5.12 Ⅰ, ❷ 참조)
- 4. Main Menu에서 Load > Load Type > Static Load > Lateral > Static Seismic Loads 선택
- 5. Static Seismic Loads 대화상자의 Add 버튼 클릭
- 6. Seismic Load Code 선택란에서 'KBC(2016)' 선택
- 7. Seismic Zone '1', Zone Factor(S)'0.22', Site Class 'Sc' 선택, Depth to MR '20'입력
- 8. Seis. Use Group란에 'I', Importance(Ie)란에 '1.2' 확인
- 9. Approximate Period의 오른쪽 ... 버튼 클릭
- 10. X-Direction Period, Y-Direction Period의 '1. T=0.085hn^(3/4)' 선택 후 클릭
- 11. Approximate Period 의 X-Dir.에 '1.923*1.46827' 입력 🖗
- 12. Y-Dir.에 '2.3923' 입력®
- 13. Response Modification Factor(R)에 X-Direction, Y-Direction 선택란에서 '6' 선택
- 14. Seismic Load Profile... 버튼 클릭
- 15. Component의 'X-Dir'선택 후 Scroll Bar를 조정하여 GL의 Story Shear에서 '1187.226kN' 확인
- 16. 'Y-Dir' 선택하여 GL의 Story Shear에서 '1401.2092kN' 확인
- ➤ X-Dir Scale-Up Factor : 0.85(1187.2/1086.0) = 0.93 → 1.0
- ➤ Y-Dir Scale-Up Factor : 0.85(1401.2/1294.3) = 0.92 → 1.0

 ♀ 응답스펙트럼 해석에서 밑면 전단력은 Reaction
 Table에서도 확인할 수 있 습니다.

양방향 조건이 동일하므로 어느 방향으로 입력하여도 무방합니다.

 ✔ X방향의 1차모드는 Mode2이고 이때의 주기는 2.9439입니다.
 이 주기는 Cu*Ta
 (1.46827*1.923=2.823)보
 다 크므로 2.823을 입력합 니다.

♀ Y방향 1차 모드는 Mode3
 이고 이때의 주기는
 2.3923입니다. 이 주기는
 약산식에 의한 주기 1.923
 보다 크고 Cu*Ta
 (1.46827*1.923=2.823)보
 다 작으므로 Y방향에는
 2.3923을 입력합니다.

....

5. 해석결과 확인

4 /	🕼 Start Page 🕼 MIDAS/Gen 🕼 Result-[Eigenvalue Mode] 🕼 Result-[Story Shear(Response Spectrum Analysis)] 🗴										4			
					-			Shear	Force					
		Level		inertia	Force	Spring F	leactions	Withou	t Spring	With 1	Spring	Eccentricity	Story Force	Eccentric
	Story	(m)	Spectrum	х	Y	х	Y	х	Y	х	Y	(m)	(kN)	(kN-m)
				(kN)			(((((()))))))))))))))))))))))))))))))))							
	Roof	64.0000	RX(RS)	2.6161e+002	2.6192e-010	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.3800e+00	2.6161e+002	3.6102e+002
	15F	59.8000	RX(RS)	1.5755e+002	1.8212e-010	0.0000e+000	0.0000e+000	2.6161e+002	0.0000e+000	2.6161e+002	0.0000e+000	1.3800e+00	1.5755e+002	2.1742e+002
	14F	55.6000	RX(RS)	1.2961e+002	1.4825e-010	0.0000e+000	0.0000e+000	4.1298e+002	0.0000e+000	4.1298e+002	0.0000e+000	1.3800e+00	1.2961e+002	1.7886e+002
	13F	51.4000	RX(RS)	1.3448e+002	1.3344e-010	0.0000e+000	0.0000e+000	5.0679e+002	0.0000e+000	5.0679e+002	0.0000e+000	1.3800e+00	1.3448e+002	1.8559e+002
	12F	47.2000	RX(RS)	1.4128e+002	1.3264e-010	0.0000e+000	0.0000e+000	5.6742e+002	0.0000e+000	5.6742e+002	0.0000e+000	1.3800e+00	1.4128e+002	1.9497e+002
	11F	43.0000	RX(RS)	1.4873e+002	1.3349e-010	0.0000e+000	0.0000e+000	6.1231e+002	0.0000e+000	6.1231e+002	0.0000e+000	1.3800e+00	1.4873e+002	2.0525e+002
	10F	38.8000	RX(RS)	1.5109e+002	1.3389e-010	0.0000e+000	0.0000e+000	6.5094e+002	0.0000e+000	6.5094e+002	0.0000e+000	1.3800e+00	1.5109e+002	2.0850e+002
	9F	35.0000	RX(RS)	1.4643e+002	1.3557e-010	0.0000e+000	0.0000e+000	6.9052e+002	0.0000e+000	6.9052e+002	0.0000e+000	1.3800e+00	1.4643e+002	2.0207e+002
	8F	31.2000	RX(RS)	1.4528e+002	1.3951e-010	0.0000e+000	0.0000e+000	7.3318e+002	0.0000e+000	7.3318e+002	0.0000e+000	1.3800e+00	1.4528e+002	2.0049e+002
	7F	27.4000	RX(RS)	1.5147e+002	1.4165e-010	0.0000e+000	0.0000e+000	7.7505e+002	0.0000e+000	7.7505e+002	0.0000e+000	1.3800e+00	1.5147e+002	2.0903e+002
	6F	23.6000	RX(RS)	1.5795e+002	1.3855e-010	0.0000e+000	0.0000e+000	8.1790e+002	0.0000e+000	8.1790e+002	0.0000e+000	1.3800e+00	1.5795e+002	2.1796e+002
	5F	19.8000	RX(RS)	1.6384e+002	1.2872e-010	0.0000e+000	0.0000e+000	8.6487e+002	0.0000e+000	8.6487e+002	0.0000e+000	1.3800e+00	1.6384e+002	2.2610e+002
	4F	16.0000	RX(RS)	1.7250e+002	1.1413e-010	0.0000e+000	0.0000e+000	9.1828e+002	0.0000e+000	9.1828e+002	0.0000e+000	1.3800e+00	1.7250e+002	2.3805e+002
	3F	11.0000	RX(RS)	1.5070e+002	0.0000e+000	0.0000e+000	0.0000e+0	9.8118e+002	0.0000e+000	9.8118e+002	0.0000e+000	1.3800e+00	1.5070e+002	2.0796e+002
	2F	6.0000	RX(RS)	1.1582e+002	0.0000e+000	0.0000e+000	0.0000e+0	1.0383e+003	0.0000e+000	1.0383e+003	0.0000e+000	1.3800e+00	1.1582e+002	1.5983e+002
	1F	0.0000	RX(RS)	1.0860e+003	1.2974e-009	0.0000e+000	0.0000e+000	1.0860e+003	0.0000e+000	1.0860e+003	0.0000e+000	1.3800e+00	1.0860e+003	1.4987e+003
	Roof	64.0000	RY(RS)	2.5805e-010	2.7574e+002	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	0.0000e+000	1.8000e+00	2.7574e+002	4.9634e+002
	15F	59.8000	RY(RS)	1.7964e-010	1.8181e+002	0.0000e+000	0.0000e+000	0.0000e+000	2.7574e+002	0.0000e+000	2.7574e+002	1.8000e+00	1.8181e+002	3.2725e+002
	14F	55.6000	RY(RS)	1.4750e-010	1.4655e+002	0.0000e+000	0.0000e+000	0.0000e+000	4.5457e+002	0.0000e+000	4.5457e+002	1.8000e+00	1.4655e+002	2.6379e+002
	13F	51.4000	RY(RS)	1.2629e-010	1.3924e+002	0.0000e+000	0.0000e+000	0.0000e+000	5.8246e+002	0.0000e+000	5.8246e+002	1.8000e+00	1.3924e+002	2.5064e+002
	12F	47.2000	RY(RS)	1.2195e-010	1.4324e+002	0.0000e+000	0.0000e+000	0.0000e+000	6.7274e+002	0.0000e+000	6.7274e+002	1.8000e+00	1.4324e+002	2.5784e+002
	11F	43.0000	RY(RS)	1.2989e-010	1.4522e+002	0.0000e+000	0.0000e+000	0.0000e+000	7.4101e+002	0.0000e+000	7.4101e+002	1.8000e+00	1.4522e+002	2.6140e+002
	10F	38.8000	RY(RS)	1.3862e-010	1.4904e+002	0.0000e+000	0.0000e+000	0.0000e+000	7.9600e+002	0.0000e+000	7.9600e+002	1.8000e+00	1.4904e+002	2.6826e+002
	9F	35.0000	RY(RS)	1.4236e-010	1.5368e+002	0.0000e+000	0.0000e+000	0.0000e+000	8.4379e+002	0.0000e+000	8.4379e+002	1.8000e+00	1.5368e+002	2.7662e+002
	8F	31.2000	RY(RS)	1.4174e-010	1.5644e+002	0.0000e+000	0.0000e+000	0.0000e+000	8.9213e+002	0.0000e+000	8.9213e+002	1.8000e+00	1.5644e+002	2.8160e+002
	7F	27.4000	RY(RS)	1.3600e-010	1.5724e+002	0.0000e+000	0.0000e+000	0.0000e+000	9.4336e+002	0.0000e+000	9.4336e+002	1.8000e+00	1.5724e+002	2.8303e+002
	6F	23.6000	RY(RS)	1.2559e-010	1.6034e+002	0.0000e+000	0.0000e+000	0.0000e+000	9.9790e+002	0.0000e+000	9.9790e+002	1.8000e+00	1.6034e+002	2.8861e+002
	5F	19.8000	RY(RS)	1.1292e-010	1.6716e+002	0.0000e+000	0.0000e+000	0.0000e+000	1.0553e+003	0.0000e+000	1.0553e+003	1.8000e+00	1.6716e+002	3.0089e+002
	4F	16.0000	RY(RS)	1.0079e-010	1.7143e+002	0.0000e+000	0.0000e+000	0.0000e+000	1.1178e+003	0.0000e+000	1.1178e+003	1.8000e+00	1.7143e+002	3.0857e+002
	3F	11.0000	RY(RS)	0.0000e+000	1.3/47e+002	0.0000e+000	0.0000e+000	0.000de+0	1.1883e+003	0.0000e+000	1.1883e+003	1.8000e+00	1.3/4/e+002	2.4/45e+002
	2F	6.0000	RY(RS)	0.0000e+000	9.7322e+001	0.0000e+000	0.0000e+000	0.0000e+000	1 2486e+003	0.0000e+000	1.2486e+003	1.8000e+00	9.7322e+001	1.7518e+002
	11-	0.0000	RY(RS)	1.8804e-009	1.2943e+003	0.0000e+000	0.0000e+000	0.0000e+000	1.2943e+003	0.0000e+000	1.2943e+003	1.8000e+00	1.2943e+003	2.3298e+003

Story Shear(for R.S.)
 Story Shear Force Coefficient

그림 5.12 응답스펙트럼하중에 의한 밑면전단력

그림 5.13 밑면전단력 비교용 등가정적 지진하중

전도모멘트 검토 🖗

midas Gen에서는 지진하중에 의한 각 층의 전도모멘트가 자동으로 산출됩니다. 내진설계기준에서는 전도모멘트에 저항할 수 있도록 저항모멘트를 계산 해야 합니다. 그러나 저항모멘트는 하중방향과 구조물의 형상에 따라서 변하므로 midas Gen에서는 수직부재의 축력의 합과 중심을 자동 계산해 줍니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Overturning Moment 선택
- Load Case/Load Combination에서 RX(RS), RY(RS)에 '√' 표시 후 OK
 버튼 클릭
- 테이블 창에서 마우스 오른쪽 클릭하여 Context Menu의 Set Overturning Moment Parameters클릭
- 4. Scale Factor for Response Spectrum 입력란에 '1' 입력, Define Reduction Factor 에서 'Fixed(1.0)'선택 후 OK 버튼 클릭 ⁹

Start I	Page 🛛 🕼	MIDAS/Gen	🤇 🕅 Result	-[Overturning I	Moment]	×					
	Charl	Level	Story Height	Reduction	Angle1	Overturn	ning Moment by (kN-	Vertical Member T m)	ypes	Sum of Story Force1 *	Overturn
Load Case	Story	(m)	(m)	(T)	([deg])	Fram	ne	Wal	1	(kN-m)	(kN-m
				(0)		Value	Ratio	Value	Ratio	(kit lii)	(441
Angle for s	tatic load ca	se result: 0 [De	g]				,		,		
Input angle	and press 1/	Apply' button to	change angle.		0.00	Apply					
RX(RS)	15F	59.80	4.20	1.00	0.00	1098.75	1.00	0.00	0.00	1.09875e+003	1.09875
RX(RS)	14F	55.60	4.20	1.00	0.00	2827.33	1.00	0.00	0.00	2.82733e+003	2.82733
RX(RS)	13F	51.40	4.20	1.00	0.00	4918.87	1.00	0.00	0.00	4.91887e+003	4.91887
RX(RS)	12F	47.20	4.20	1.00	0.00	7197.18	1.00	0.00	0.00	7.19718e+003	7.19718
RX(RS)	11F	43.00	4.20	1.00	0.00	9571.17	1.00	0.00	0.00	9.57117e+003	9.57117
RX(RS)	10F	38.80	4.20	1.00	0.00	12001.59	1.00	0.00	0.00	1.20016e+004	1.20016
RX(RS)	9F	35.00	3.80	1.00	0.00	14242.82	1.00	0.00	0.00	1.42428e+004	1.42428
RX(RS)	8F	31.20	3.80	1.00	0.00	16540.02	1.00	0.00	0.00	1.65400e+004	1.65400
RX(RS)	7F	27.40	3.80	1.00	0.00	18912.35	1.00	0.00	0.00	1.89123e+004	1.89123
RX(RS)	6F	23.60	3.80	1.00	0.00	21375.77	1.00	0.00	0.00	2.13758e+004	2.13758
RX(RS)	5F	19.80	3.80	1.00	0.00	23947.98	1.00	0.00	0.00	2.39480e+004	2.39480
RX(RS)	4F	16.00	3.80	1.00	0.00	26652.19	1.00	0.00	0.00	2.66522e+004	2.66522
RX(RS)	3F	11.00	5.00	1.00	0.00	30462.33	1.00	0.00	0.00	3.04623e+004	3.04623
RX(RS)	2F	6.00	5.00	1.00	0.00	34587.27	1.00	0.00	0.00	3.45873e+004	3.45873
RX(RS)	1F	0.00	6.00	1.00	0.00	39935.52	1.00	0.00	0.00	3.99355e+004	3.99355
RY(RS)	15F	59.80	4.20	1.00	90.00	1158.12	1.00	0.00	0.00	1.15812e+003	1.15812
RY(RS)	14F	55.60	4.20	1.00	90.00	3064.22	1.00	0.00	0.00	3.06422e+003	3.06422
RY(RS)	13F	51.40	4.20	1.00	90.00	5489.93	1.00	0.00	0.00	5.48993e+003	5.48993
RY(RS)	12F	47.20	4.20	1.00	90.00	8249.72	1.00	0.00	0.00	8.24972e+003	8.24972
RY(RS)	11F	43.00	4.20	1.00	90.00	11223.47	1.00	0.00	0.00	1.12235e+004	1.12235
RY(RS)	10F	38.80	4.20	1.00	90.00	14341.52	1.00	0.00	0.00	1.43415e+004	1.43415
RY(RS)	9F	35.00	3.80	1.00	90.00	17254.68	1.00	0.00	0.00	1.72547e+004	1.72547
RY(RS)	8F	31.20	3.80	1.00	90.00	20249.48	1.00	0.00	0.00	2.02495e+004	2.02495
RY(RS)	7F	27.40	3.80	1.00	90.00	23334.28	1.00	0.00	0.00	2.33343e+004	2.33343
RY(RS)	6F	23.60	3.80	1.00	90.00	26526.39	1.00	0.00	0.00	2.65264e+004	2.65264
RY(RS)	5F	19.80	3.80	1.00	90.00	29845.84	1.00	0.00	0.00	2.98458e+004	2.98458
RY(RS)	4F	16.00	3.80	1.00	90.00	33315.83	1.00	0.00	0.00	3.33158e+004	3.33158
RY(RS)	3F	11.00	5.00	1.00	90.00	38157.31	1.00	0.00	0.00	3.81573e+004	3.81573
RY(RS)	2F	6.00	5.00	1.00	90.00	43328.90	1.00	0.00	0.00	4.33289e+004	4.33289
RY(RS)	1E	0.00	6.00	1.00	90.00	49935 74	1.00	0.00	0.00	4 99357e+004	4 99357

위 : 보정계수(Cm) = 1 (RX Load Case) 아래 : 1 (RY Load Case) 적용한 경우

그림 5.14 전도모멘트 평가결과 Table

전도모멘트 감소계수는 정적해석에서 구한 결과 에 고층 구조물에서 고차 모드의 영향을 고려하는 계수로써 등가정적 지진 해석의 경우에는 층에 따 라 감소계수를 다르게 적 용합니다. 그러나 동적해 석에 대해서는 '1'로 적용 할 수 있습니다.

수직부재 축력과 그 중심 좌표를 확인하여 전도모멘트에 저항하는 저항모멘트를 계산합니다.

- 1. Main Menu에서 Results > Combination > Load Combination 클릭
- 2. General 탭 'STL ENV_SER' 아래 빈칸에 'D+L' 입력
- 3. Description란에 '1.0D + 1.0L'입력
- Close 4. Load Cases and Factors에서 DL(ST), LL(ST) 선택 후 클릭
- 5. Main Menu에서 Results > Tables > Results Tables > Story > Story Axial Force Sum 선택
- 0K 6. Loadcase/Load Combination에서 D+L(CB)에 '√'표시 후 버튼 클릭

No	Name	Active	Туре	Descr ^		LoadCase	Factor
95	gLCB95	Active	Add	0.6(D) + 0.85V	DL(ST)		1.0000
96	gLCB96	Active	Add	0.6(D) + 0.85V	LL(ST)		1.0000
97	gLCB97	Active	Add	0.6(D) - 0.85W	*		-
98	gLCB98	Active	Add	0.6(D) - 0.85W			
99	gLCB99	Active	Add	0.6(D) - 0.85W			
100	gLCB100	Active	Add	0.6(D) - 0.85W			
101	gLCB101	Active	Add	0.6(D) + 0.7EX			
102	gLCB102	Active	Add	0.6(D) + 0.7EY			
103	gLCB103	Active	Add	0.6(D) - 0.7EX			
104	gLCB104	Active	Add	0.6(D) - 0.7EY			
105	gLCB105	Active	Add	0.6(D) + 0.7(1.			
106	gLCB106	Active	Add	0.6(D) + 0.7(1.			
107	gLCB107	Active	Add	0.6(D) + 0.7(1.			
108	gLCB108	Active	Add	0.6(D) + 0.7(1.			
109	gLCB109	Active	Add	0.6(D) - 0.7(1.0			
110	gLCB110	Active	Add	0.6(D) - 0.7(1.0			
111	gLCB111	Active	Add	0.6(D) - 0.7(1.0			
112	gLCB112	Active	Add	0.6(D) - 0.7(1.0			
113	STL ENV_STR	Active	Envelope	Steel Strength			
114	STL ENV_SER	Active	Envelope	Steel Servicea			
	D+L	Active	Add	.			
				F.			

4 /	🚺 Start F	Page 🛛 🞑	MIDAS/Gen	🔯 Result	t-[Overturning Moment] 🛛 🞑	Result-[Story Ax	ial Force Sum] $ imes$
			Lovel	Stopy Height	Axial Force Sum of Vertical	Center of A	xial Forces
	Load Case	Story	(m)	(m)	Elements (kN)	X Coordinate	Y Coordinate
►	D+L	15F	59.80	4.20	-7887.323054	17.9565	13.8000
	D+L	14F	55.60	4.20	-15008.017189	17.9687	13.8000
	D+L	13F	51.40	4.20	-22128.711325	17.9723	13.8000
	D+L	12F	47.20	4.20	-29249.405461	17.9743	13.8000
	D+L	11F	43.00	4.20	-36370.099596	17.9762	13.8000
	D+L	10F	38.80	4.20	-43513.161682	17.9764	13.8000
	D+L	9F	35.00	3.80	-50634.977858	17.9768	13.8000
	D+L	8F	31.20	3.80	-57757.050823	17.9776	13.8000
	D+L	7F	27.40	3.80	-64921.408718	17.9775	13.8000
	D+L	6F	23.60	3.80	-72085.766613	17.9779	13.8000
	D+L	5F	19.80	3.80	-79250.124509	17.9784	13.8000
	D+L	4F	16.00	3.80	-86451.469138	17.9785	13.8000
	D+L	3F	11.00	5.00	-93768.709538	17.9783	13.8000
	D+L	2F	6.00	5.00	-101979.906713	17.9788	13.8000
	D+L	1F	0.00	6.00	-110278.016739	17.9805	13.8000
4 1	\Story	Axial Fo	rce Sum /	·			•

(a) Center of Axial Force Sum

Axial Force Sum

(b) Resistance Moment

그림 5.16 저항모멘트 개념

P-delta 해석 적용여부 검토

안정계수를 확인하여 P-delta 해석 적용여부를 검토합니다.

- 1. Main Menu에서 Results > Tables > Results Tables > Story > Stability Coefficient 선택
- Loadcase/Load Combination에서 'RX(RS)'에 '√' 표시 후 OK 버튼 클릭
- 3. Stability Coefficient Parameters의 Deflection Amplification Factor(Cd)에 '5', Importance Factor(Ie)에 '1.2', Scale Factor에 '1.0' 입력
- 4. Vertical Load Combination 선택란에 'DL' 선택 후 Add 버튼 클릭
- 5. 4번과 동일한 방법으로 'LL' 선택 후 Add 버튼 클릭 🎙
- 6. Story Drift Method에서 'Drift on the Center of Mass' 선택하고
 OK 버튼 클릭
- 7. Remark열에서 'OK' 확인
- 8. 마우스 오른쪽 클릭하여 Context Menu 에서 Activate Records 클릭 후 'RY(RS)'
 에 '√' 표시 후 OK 버튼 클릭
- 9. 같은 방법으로 설정 후 Stability Coefficient(Y) Tab에서 'RY(RS) Load Case'도 확인

 Stability Coefficient
 =(Vertical Load*Modified Drift)/(Story Shear Force* Scale Factor*Height*Cd)

> Modified Drift = (Cd* Drift*Scale Factor)/(Ie)

Stability Coefficient계산시 Cd값과 Scale Factor값은 분모, 분자에서 감쇄되기 때문에 이 값들의 변경과 관계가 없습니다. 단, Modified Drift값에는 영향을 미칩니다.

MIDAS

< /	🕼 Start Page 🔯 MIDAS/Gen 🔯 Result-[Stability Coefficient] ×												
	Load Case	Story	Story Height (m)	Vertical Load (kN)	Story Shear Force (kN)	Modified Story Drift (m)	Beta (β)	Stability Coefficient (θ)	Allowable Limit	Remark	P-Delta Incremental Factor (ad)		
	Cd=5, le=1.2, Scale Factor=1 Press right mouse button and click 'Set Stability Coefficient Parameters' menu to change Cd/le/Scale Factor/Beta!												
	RX(RS)	15F	4.20	7887.3231	261.6079	0.0122	1.0000	0.0175	0.1000	OK	1.0000		
	RX(RS)	14F	4.20	15008.0172	412.9821	0.0143	1.0000	0.0247	0.1000	ОК	1.0000		
	RX(RS)	13F	4.20	22128.7113	506.7936	0.0155	1.0000	0.0322	0.1000	ОК	1.0000		
	RX(RS)	12F	4.20	29249.4055	567.4185	0.0164	1.0000	0.0402	0.1000	ОК	1.0000		
	RX(RS)	11F	4.20	36370.0996	612.3134	0.0170	1.0000	0.0480	0.1000	OK	1.0000		
	RX(RS)	10F	4.20	43513.1617	650.9395	0.0166	1.0000	0.0530	0.1000	OK	1.0000		
	RX(RS)	9F	3.80	50634.9779	690.5200	0.0147	1.0000	0.0566	0.1000	ОК	1.0000		
	RX(RS)	8F	3.80	57757.0508	733.1752	0.0147	1.0000	0.0607	0.1000	ОК	1.0000		
	RX(RS)	7F	3.80	64921.4087	775.0456	0.0141	1.0000	0.0620	0.1000	OK	1.0000		
	RX(RS)	6F	3.80	72085.7666	817.9012	0.0138	1.0000	0.0641	0.1000	ОК	1.0000		
	RX(RS)	5F	3.80	79250.1245	864.8720	0.0133	1.0000	0.0644	0.1000	ОК	1.0000		
	RX(RS)	4F	3.80	86451.4691	918.2772	0.0125	1.0000	0.0618	0.1000	OK	1.0000		
	RX(RS)	3F	5.00	93768.7095	981.1848	0.0152	1.0000	0.0579	0.1000	OK	1.0000		
	RX(RS)	2F	5.00	101979.9067	1038.3375	0.0129	1.0000	0.0505	0.1000	ОК	1.0000		
	RX(RS)	1F	6.00	110278.0167	1086.0453	0.0158	1.0000	0.0536	0.1000	ОК	1.0000		
4 1	Stabili	ty Coe	fficient	(X) Stab	ility Coeffic	ient(Y) /				•			

< /	🕼 Start F	Page	🕼 MIDAS	5/Gen 🚺 R	esult-[Stability	Coefficient]	×					
	Load Case	Story	Story Height (m)	Vertical Load (kN)	Story Shear Force (kN)	Modified Story Drift (m)	Beta (β)	Stability Coefficient (θ)	Allowable Limit	Remark	P-Delta Incremental Factor (ad)	
	Cd=5, le=1.2, Scale Factor=1 Press right mouse button and click 'Set Stability Coefficient Parameters' menu to change Cd/le/Scale Factor/Beta!											
	RY(RS)	15F	4.20	7887.3231	275.7425	0.0083	1.0000	0.0113	0.1000	ОК	1.0000	
	RY(RS)	14F	4.20	15008.0172	454.5699	0.0102	1.0000	0.0161	0.1000	ОК	1.0000	
	RY(RS)	13F	4.20	22128.7113	582.4551	0.0115	1.0000	0.0208	0.1000	OK	1.0000	
	RY(RS)	12F	4.20	29249.4055	672.7406	0.0124	1.0000	0.0257	0.1000	ОК	1.0000	
	RY(RS)	11F	4.20	36370.0996	741.0106	0.0130	1.0000	0.0304	0.1000	ОК	1.0000	
	RY(RS)	10F	4.20	43513.1617	796.0009	0.0128	1.0000	0.0334	0.1000	OK	1.0000	
	RY(RS)	9F	3.80	50634.9779	843.7898	0.0113	1.0000	0.0358	0.1000	ОК	1.0000	
	RY(RS)	8F	3.80	57757.0508	892.1274	0.0113	1.0000	0.0386	0.1000	ОК	1.0000	
	RY(RS)	7F	3.80	64921.4087	943.3601	0.0110	1.0000	0.0397	0.1000	OK	1.0000	
	RY(RS)	6F	3.80	72085.7666	997.8988	0.0109	1.0000	0.0414	0.1000	ОК	1.0000	
	RY(RS)	5F	3.80	79250.1245	1055.3303	0.0107	1.0000	0.0422	0.1000	ОК	1.0000	
	RY(RS)	4F	3.80	86451.4691	1117.7922	0.0099	1.0000	0.0404	0.1000	OK	1.0000	
	RY(RS)	3F	5.00	93768.7095	1188.3483	0.0125	1.0000	0.0395	0.1000	ОК	1.0000	
	RY(RS)	2F	5.00	101979.9067	1248.6447	0.0117	1.0000	0.0382	0.1000	ОК	1.0000	
	RY(RS)	1F	6.00	110278.0167	1294.3198	0.0169	1.0000	0.0479	0.1000	OK	1.0000	
4 1	∖ Stabil	ity Coe	efficient()	X) <mark>)</mark> Stabil	ity Coeffic	ient(Y) /						

위 : Stability Coefficient(X) Tab 이 래 : Stability Coefficient(Y) Tab

그림 5.17 안정계수 평가결과 Table

그림 5.17 에서 P-delta 해석적용 여부를 확인한 결과가 'Redesign'이면 건물은 잠재적 으로 불안정하므로 재설계해야 합니다. 만약 Remark에서 'P-delta Req.'가 출력 되면 P-delta 해석을 수행해야 하고, 'OK'이면 P-delta 해석까지 요구 되지 않는 해석모델입 니다.

5-4 사용성 평가

사용하중 조건에서 풍하중 작용시 최대변위와 지진하중 작용시 층간변위를 검토합니 다. 중력방향 하중에 의한 보의 수직처짐 검토는 생략합니다.

- 1. 그림 5.18의 **●**에서 Model View 클릭
- 2. Main Menu에서 Results > Deformations > Deformed Shape 클릭
- 3. Status Bar 우측의 단위변환창에서 'cm' 선택
- 4. Load Cases/Combination에서 'ST : WX' 선택
- 5. Type of Display에서 'Legend' 선택
- 6. Apply 버튼 클릭
- 7. Legend에서 X-Dir 최대변위 '8.278' cm 확인
- 8. Load Cases/ Combinations 선택란에서 'ST : WY' 선택
- 9. Apply 버튼 클릭
- 10. Legend에서 Y-Dir 최대변위 '7.536' cm 확인
- ➢ X-Dir 최대변위 : 8.278 cm (H/773)
- ➢ Y-Dir 최대변위 : 7.536 cm (H/849)

그림 5.18 풍하중 작용시 최대변위

 ↓ 내진등급에 따른 허용층 간변위 (KBC 2016)
 - 특: 0.01 hx
 - I: 0.015 hx

- II : 0.02 hx

사용하중조건에서 지진하중 작용 시 층간변위를 검토합니다. 이 구조물은 비틀림 비 정형구조물이므로 모서리 층간변위 중 최대로 허용층간 변위와 비교하여 안정성을 평가합니다(그림 5.19 참조). 만약, 비틀림 비정형이 아닌 경우에는 질량중심에서의 층간변위로 구조물의 안정성을 검토합니다.

- ▶ X-Dir : 층간 변위가 전층에서 만족합니다.
- ▶ Y-Dir : 층간 변위가 전층에서 만족합니다.
- 1. Main Menu에서 Results > Tables > Results Tables > Story > Story Drift 선택
- 2. Loadcase/Combination에서 gLCB1, gLCB2에 '√' 표시 후 OK 버튼 클릭
- 3. Story Drift Parameters의 Deflection Amplification Factor(Cd)에 '5' Importance Factor(Ie)에 '1.2' 입력
- 4. Allowable Ratio에서 '0.015' 확인[®]
- 5. Vertical Load Combination 선택란에 'DL' 선택 후 Add 버튼 클릭
- 6. 5번과 동일한 방법으로 'LL' 선택 후 Add 버튼 클릭
- 7. Story Drift Parameters 창의 OK 버튼 클릭
- 8. Maximum Drift of All Vertical Elements의 Remark열에서 'OK' 확인
- 9. Drift(Y) Tab에서 같은 방법으로 'gLCB3', 'gLCB4'의 하중조합에서도 확인

< /	🕼 Start Page 🕼 MIDAS/Gen 🕼 Result-[Story Drift] 🗙																
				P-Delta		Maxin	num Drit	ft of All Ve	rtical Ele	ments		Drift a	at the Center of	Mass			
	Load Case	Story	Story Height (cm)	Incremental Factor (ad)	Allowable Story Drift Ratio	Node	Story Drift (cm)	Modified Drift (cm)	Story Drift Ratio	Remark	Story Drift (cm)	Modified Drift (cm)	Drift Factor (Maximum/Cur rent)	Story Drift Ratio	Remark		
	RMC,No Press ri	t Used, (ght mous	Cd=5, le=1 e button a	1.2, Scale Fac nd click 'Set S	tor=1, Allow tory Drift Par	able Ratio: ameters'	=0.015 menu to	o change F	RMC or C	d/le/Scale	Factor/Al	owable Ra	atio/Beta!				
\mathbf{F}	gLCB1	15F	420.00	1.00	0.0150	331	0.316	1.3170	0.003	OK	0.2927	1.2197	1.0797	0.0029	ОК		
	gLCB1	14F	420.00	1.00	0.0150	307	0.375	1.5626	0.003	ОК	0.3427	1.4280	1.0942	0.0034	ОК		
	gLCB1	13F	420.00	1.00	0.0150	283	0.411	1.7138	0.004	ОК	0.3720	1.5500	1.1057	0.0037	ОК	R	temark
	gLCB1	12F	420.00	1.00	0.0150	259	0.438	1.8290	0.004	ОК	0.3927	1.6361	1.1179	0.0039	ОК		
	gLCB1	11F	420.00	1.00	0.0150	235	0.460	1.9184	0.004	ОК	0.4070	1.6957	1.1313	0.0040	ОК		
	gLCB1	10F	420.00	1.00	0.0150	211	0.457	1.9067	0.004	ОК	0.3995	1.6644	1.1455	0.0040	ОК		
	gLCB1	9F	380.00	1.00	0.0150	187	0.407	1.6967	0.004	ОК	0.3519	1.4663	1.1571	0.0039	ОК	0	к
	gLCB1	8F	380.00	1.00	0.0150	163	0.412	1.7170	0.004	ОК	0.3516	1.4650	1.1720	0.0039	ОК	1 0	К
	gLCB1	7F	380.00	1.00	0.0150	139	0.397	1.6547	0.004	ОК	0.3373	1.4056	1.1772	0.0037	ОК	1 0	К
	gLCB1	6F	380.00	1.00	0.0150	115	0.396	1.6503	0.004	ОК	0.3317	1.3819	1.1942	0.0036	ОК	0	K
	gLCB1	5F	380.00	1.00	0.0150	91	0.389	1.6223	0.004	ОК	0.3203	1.3344	1.2157	0.0035	ОК	0	K
	gLCB1	4F	380.00	1.00	0.0150	67	0.370	1.5424	0.004	OK	0.2994	1.2473	1.2366	0.0033	ОК		K
	gLCB1	3F	500.00	1.00	0.0150	43	0.468	1.9537	0.003	OK	0.3638	1.5159	1.2888	0.0030	ОК		K
	gLCB1	2F	500.00	1.00	0.0150	1	0.426	1.7761	0.003	ОК	0.3086	1.2857	1.3814	0.0026	ОК		ĸ
	gLCB1	1F	600.00	1.00	0.0150	21	0.581	2.4223	0.004	OK	0.3800	1.5835	1.5298	0.0026	ОК		ĸ
	gLCB2	15F	420.00	1.00	0.0150	343	0.316	1.3170	0.003	ОК	0.2927	1.2197	1.0797	0.0029	ОК	3 0	ĸ
	gLCB2	14F	420.00	1.00	0.0150	319	0.375	1.5626	0.003	ОК	0.3427	1.4280	1.0942	0.0034	ОК	3 0	ĸ
	gLCB2	13F	420.00	1.00	0.0150	295	0.411	1.7138	0.004	ок	0.3720	1.5500	1.1057	0.0037	ок	5 0	к
	gLCB2	12F	420.00	1.00	0.0150	271	0.438	1.8290	0.004	ОК	0.3927	1.6361	1.1179	0.0039	ОК	3 0	к
	gLCB2	11F	420.00	1.00	0.0150	247	0.460	1.9184	0.004	ок	0.4070	1.6957	1.1313	0.0040	ок	3 0	ĸ
	qLCB2	10F	420.00	1.00	0.0150	223	0.457	1.9067	0.004	ок	0.3995	1.6644	1.1455	0.0040	ОК) 01	К
	gLCB2	9F	380.00	1.00	0.0150	199	0.407	1.6967	0.004	ок	0.3519	1.4663	1.1571	0.0039	ок	1 0	К
	gLCB2	8F	380.00	1.00	0.0150	175	0.412	1.7170	0.004	ОК	0.3516	1.4650	1.1720	0.0039	ок	0	K
	qLCB2	7F	380.00	1.00	0.0150	151	0.397	1.6547	0.004	ОК	0.3373	1.4056	1.1772	0.0037	ОК	1 0	K
	gLCB2	6F	380.00	1.00	0.0150	127	0.396	1.6503	0.004	ОК	0.3317	1.3819	1.1942	0.0036	ОК		ĸ
	qLCB2	5F	380.00	1.00	0.0150	103	0.389	1.6223	0.004	ОК	0.3203	1.3344	1.2157	0.0035	ОК		K
	gLCB2	4F	380.00	1.00	0.0150	79	0.370	1.5424	0.004	ОК	0.2994	1.2473	1.2366	0.0033	ОК		ĸ
	gLCB2	3F	500.00	1.00	0.0150	55	0.468	1.9537	0.003	ОК	0.3638	1.5159	1.2888	0.0030	ОК		к
	qLCB2	2F	500.00	1.00	0.0150	13	0.426	1.7761	0.003	ОК	0.3086	1.2857	1.3814	0.0026	ОК	0	к
	ol CB2	1E	600.00	1.00	0.0150	33	0.581	2.4223	0.004	ОК	0.3800	1.5835	1.5298	0.0026	ОК	3 0	к
	\ Drift	(X) (I	Drift(Y)	▲ Drift(Cc	mbined)	7										3 0	к
	(Dille			V Dungoo	1.00	0.015		45 0.473	. 1.3	0000 0	0040 01	0.0	1.2000	1.00		5 0	К
	[gL	CB4 2F	500.00	1.00	0.015	0	1 0.472	25 1.9	9687 0	.0039 OK	0.20	322 1.1760	1.67	40 0.0024	1 0	K
	ļ	gL	CB4 1F	600.00	1.00	0.015	0 :	21 0.717	75 2.9	9897 0	.0050 OK	0.40	050 1.6874	1.77	18 0.0028	3 0	К
	L	<u>∢) ∖ </u>	Drift(X)	\Drift(Y) /	, I <mark>p</mark> rift(Cor	nbined)	/							•			

그림 5.19 층간 변위 Table

Steel 건축물 구조해석 및 설계

midas Gen에서는 다음과 같은 설계기준을 적용하여 철골부재 자동설계를 수행할 수 있습니다.

- ▶ 한국 강구조학회 하중저항계수설계법 (KSSC-LSD16)
- ▶ 한국 강구조학회 하중저항계수설계법(KSSC-LSD09)
- ▶ 한국 강구조학회 허용응력설계법 (KSSC-ASD03)
- ▶ 대한 건축학회 강구조 한계상태 설계기준 (AIK-LSD97)
- ▶ 미국 강구조협회 강구조 허용응력 설계법 (AISC(14th)-ASD10)
- ▶ 미국 강구조협회 하중저항계수 설계법 (AISC(14th)-LRFD10)

본 예제에서는 KSSC-LSD16 Code를 적용하여 철골부재의 자동설계를 수행합니다.

6-1 하중조합조건 생성

자동설계를 수행하기 전에 설계에 적용할 하중조합조건을 생성합니다. 본 구조의 내진설계 범주는 D이므로 지진하중의 직교효과를 100:30으로 고려합니다. 설계기준을 선택하면 기준에서 요구하는 하중조합조건을 자동 생성할 수 있습니다.

- 1. Model View를 제외한 모든 창을 종료
- 2. Results Menu의 Combinations 선택 Steel Design 탭 선택®
- 3. <u>Auto Generation</u>,,, 버튼 클릭
- 4. Design Code 선택란에 'KBC-LSD16' 확인
- 5. Scale Up Factor에 '1' 입력하고, 'RX' 선택 후 Add 버튼 클릭
- 6. Scale Up Factor에 '1' 입력하고, 'RY' 선택 후 Add 버튼 클릭
- 7. Set Load Cases for Wind Direction..클릭, 풍하중조합조건 입력후 [OK]
- 8. Consider Orthogonal Effect에 '√' 표시를 한 후에
- 9. Set Load Cases for Orthogonal Effect,.. 버튼 클릭
- 10. Set Load Cases for Orthogonal Effect 창에서 Load Case1에 'RX(RS)', Load Case2에 'RY(RS)' 선택 후 Add 버튼 클릭하고 OK 버튼 클릭
- 11. Automatic Generation of Load Combination 창의 OK 버튼 클릭
- 12. Load Combinations 대화상자에서 Close 버튼 클릭

	No	Name	Active	Туре	Description _		LoadCase	Factor
•	1	WINDC	Inactive	Add	WX + WX(A)	•	WX(ST)	1.0000
	2	WINDC	Inactive	Add	WX - WX(A)		WX(A)(ST)	1.0000
	3	WINDC	Inactive	Add	WY + WY(A)	*		
	4	WINDC	Inactive	Add	WY - WY(A)			
	5	sLCB5	Strengt	Add	1.4(D)			
	6	sLCB6	Strengt	Add	1.2(D) + 1.6(L)			
	7	sLCB7	Strengt	Add	1.2(D) + 1.3WINDCOM			
	8	sLCB8	Strengt	Add	1.2(D) + 1.3WINDCOM			
	9	sLCB9	Strengt	Add	1.2(D) + 1.3WINDCOM			
	10	sLCB10	Strengt	Add	1.2(D) + 1.3WINDCOM			
	11	sLCB11	Strengt	Add	1.2(D) - 1.3WINDCON			1
	12	sLCB12	Strengt	Add	1.2(D) - 1.3WINDCON			
	13	sLCB13	Strengt	Add	1.2(D) - 1.3WINDCON			
	14	sLCB14	Strengt	Add	1.2(D) - 1.3WINDCON			
	15	sLCB15	Strengt	Add	1.2(D) + 1.0(1.0(1.00)			
	16	sLCB16	Strengt	Add	1.2(D) + 1.0(1.0(1.00)			
	17	sLCB17	Strengt	Add	1.2(D) + 1.0(1.0(1.00)			
	18	sLCB18	Strengt	Add	1.2(D) + 1.0(1.0(1.00)			
	19	sLCB19	Strengt	Add	1.2(D) + 1.0(1.0(1.00)			
	20	sLCB20	Strengt	Add	1.2(D) + 1.0(1.0(1.00)			
	21	sLCB21	Strengt	Add	1.2(D) + 1.0(1.0(1.00)) -			
(III					

그림 6.1 하중조합 조건의 생성

 설계에 적용할 하중조합
 조건을 생성할 때에는 반
 드시 해당설계 모듈과 관
 련된 탭으로 이동하여 하
 중조합조건을 생성해야 합니다.

Automatic Generation of Load Combinations	Set Load Cases for Wind Direction
Option Add Peplace Code Selection Steel Concrete SRC Cold Formed Steel Footing Aluminum Design Code : KBC-LSD16	Set Load Cases for Wind Direction Wind Loads Group © Middle Low Rise Building © High Rise Building Wind Direction Along Wind Load Case : WX • Across Wind Load Case : WX(A) • Torsional Wind Load Case : None •
Scale up for Response Spectrum Load Case Scale up Factor : 1 RX - Factor Load Case Add 1,000 RX Modify 1,000 RY Delete Wind Load Combinations	Factor GD: 2.2 k: 0.55 Group No Along Across Torsion GD k 1 WX WX(A) None - - 2 WY WY(A) None - -
Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case ST Only CS Only ST+CS Consider Orthogonal Effect Set Load Cases for Orthogonal Effect Set Load Cases for Orthogonal Effect SRSS(Square-Root-of-Sum-of-Squares) Generate Additional Load Combinations for Special Seismic Load	Add Modify Delete Add Modify Delete Torsion Wind Direction : (+),(-) Direction • OK Cancel
Factors for Seismic Porces Factors for Seismic Design OK Cancel	Set Load Cases for Orthogonal Effect

그림 6.2 설계기준 및 Scale Up Factor 입력

ОK

Cancel

♀ 설계과정에서 변경한 재

습니다.

질과 단면데이터는 해석 모델에는 영향을 주지 않

단, Update등의 기능으로

해석모델에 반영한 경우 는 구조해석 및 설계를 다

시 수행하여야 합니다.

6-2 설계변수 입력

철골부재의 자동설계에 적용할 설계변수를 입력합니다. 설계변수 중 General Design Parameter는 구조재료와 무관하게 전체적으로 적용되는 변수로서, Frame의 Sidesway 에 관한 정의나 적재하중 저감계수, 비지지와 횡지지길이, 유효 좌굴길이 계수 등을 입력합니다.

그리고 구조재료나 기초설계 등으로 구분되는 각 설계모듈별로, 적용되는 설계 변수 를 입력합니다.

설계기준이나 구조재료의 변경 그리고 해당 설계법에만 적용되는 변수들이 여기에 포함되며, Steel/Concrete/SRC/Footing의 설계모듈별로 별도로 입력합니다. 본 예제에서는 기본적인 변수만을 적용하여 철골부재의 자동설계를 수행합니다.⁹

- 1. Main Menu에서 Design > General Design Parameter > Definition of Frame 선택
- 2. X-Direction of Frame에 'Braced / Non-sway' 선택
- 3. Y-Direction of Frame에 'Braced / Non-sway' 선택
- 4. OK 버튼 클릭

Definitio	on of Frame	×
Defi X-[nition of Frame Direction of Frame	○ Unbraced Sway ● Braced Non-sway
Y-C)irection of Frame	⊙ Unbraced Sway ● Braced Non-sway
Des	ign Type	
	⊚ 3-D ⊚ Y-Z Plane	© X-Z Plane © X-Y Plane
	Auto Calculate Effec	ctive Length Factors
		OK Close

그림 6.3 Definition of Frame

설계변수를 입력하지 않 으면 midas Gen 에서 설정 된 초기값이 적용됩니다.

♀ 예제의 건물은 횡방향으
 로 지지된 Braced Frame
 으로 가정합니다.

철골구조에서 보 또는 거더에 정모멘트가 발생하면 상부 플랜지에 압축응력이 발생 되고, 이는 Shear Connector로 연결된 슬래브에 의해 횡방향으로 지지되므로, 휨에 의 한 압축 플랜지의 횡지지 길이를 특별히 고려할 필요는 없습니다.

그러나, 거더에 부모멘트가 발생하면 하부 플랜지에 압축응력이 발생하고 이는 슬래브에 의해서 횡지지 된다고 볼 수 없으므로, 해당단면에 대하여 횡지지 길이가 입력되어야 합니다.

횡지지 길이는 휨에 의한 허용압축응력 산정시 적용됩니다.

- 1. 📑 Initial View 클릭하고 🍺 Activate All 클릭
- 2. Status Bar 우측의 단위 변환창에서 'm' 선택
- 3. Main Menu에서 Design > General Design Parameter > Unbraced Length(L, Lb) 선택
- 4. Work Tree > Properties > Section에서 2-4SG1, 5-RSG1 더블클릭으로 선택 Unbraced Length(L,Lb)대화창에서 Lb에 4.0입력 후, Apply
- 5. Work Tree > Properties > Section에서 2-4SG2, 2-4SG3, 5-RSG2, 5-RSG3 선택 Unbraced Length(L,Lb)대화창에서 Lb에 3.0입력 후, Apply
- 6. Work Tree > Properties > Section에서 2-4SG4, 2-4SG5, 5-RSG4, 5-RSG5 선택 Unbraced Length(L,Lb)대화창에서 Lb에 3.0입력 후, Apply

 ♥ 비지지 길이 (Unbraced Length)를 입력하지 않으
 면 모델에 입력된 요소길
 이가 적용됩니다.

단면번호	횡지지 길이(m)
2-4SG1, 5-RSG1	4.0
2-4SG2, 2-4SG3, 5-RSG2, 5-RSG3	3.0
2-4SG4, 2-4SG5, 5-RSG4, 5-RSG5	3.0

표 6.1 거더의 횡지지 길이

Wew Structure Node/Ek	lement Properties Boundary Li	aad Analysis Results P	ushover Design Seismic Evalu	uation Query Tools MOD!	Module			0 Help * - • *
KSSC-LSD16 - K	KCI-USD12 · Alk-SRC2K	· Alk-CFSD98 ·	27 Displacement Optimal Design	3Q Steel/Cold Formed Steel Design *	R Steel/Cold Formed Steel Design *	P		
General Design	Meshed Design *	22 Com Formen steer besign -	-18 section for Design	TO SRC Design	RO SRC Design -	Perform Ratch Darion		
General	Design		Section	Result	Forces/Properties	Eatch		
「まって」際語言は図案であり	🛱 🕅 🖲 1 🕅 🔟 1 🗣 👒 🛞 1 🕅	e 🖹 🙀	🔤 🗆 18 18 🖛 🕅 🛤	i 12 🖾 🍕 🖓 🕹 🗮 🗮 i 14	N 🖓 🖓 🖓 🖓			
Tree Menu 🔍 🗙	4 / 🕼 Start Page 🕼 MIDAS/Ge	n X					Þ. Ti	e Menu 2 🕴 🕈 🗙
General Steel Concrete SRC Cold P	1						2 2	- I 105 : 11-13C1
Unbraced Length(LLb) •				- NA KA			100	- I 105 : 14-15C1
Option			S69 50	1	~		7 🔤 🛛	- I 151 : 1-2C1A
Add/Heplace O Delete			2 Augusta	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Î			- I 163 : 5-7C1A
Unbraced Length								- I 154 : 8-10CTA
Lz : 0 m								I 195 : 14-15CIA
Laterally Unbraced Length					5-8-			- I 201 : 1-2C2 - T 202 : 3-4C2
Lb : 0 m								- I 203 : 5-7C2
2 Do not consider			C 937 C		\$			- I 205 : 11-19C2
			193		S-			- I 205 : 14-15L2
				C. A. M. A. M.	S.			- I 251:1-2C3 - I 252:3-4C3
				C. C. C. T.	\$			- I 253:5-7C3 - T 254:8-10C3
Apply Close				P. P. Lander				- 1 295 : 11-13C3 - 4
					S.			- I 300 :
					5			- I 301 : 1-2C4 - I 302 : 3-4C4
				1981 10	5			- I 303 : 5-7C4 - T 304 : 8-10C4
			200	MAR STATISTICS	2			- I 305 : 11-1904
				ALC: AND ALC				-I 400 :
			Sec. 19	and the second	-			1 401 : 2-4561 1 402 : 2-4562
			1 1	The state of the	9			- I 403 : 2-4563 - I 404 : 2-4564
			1	. Of a				- I 405:2-4565
			S.					- I 900 :
								- 1 901 : 9/H3/G1 - 1 902 : 5-RS/62
	Message Window						* ×	1 503 : 5-HSG3 1 504 : 5-RS64
							^	1 905 : 5-RS65 1 906 : 5-RS81
								T 1000 :
								T 1002 : 4+108R1
	22						*	- I 2000 :
Tree Menu Task Pane	Command Message	knalysis Message /						* 2001 · 1_9889
For Help, press P1					Frame-864 U: 36, 22.2, 6	G: 36, 22.2	(64 kN ▼	m 🔹 💠 🕼 🕨 non 🔹 💽 📘 1 🗧 / 2 🚆

그림 6.4 횡지지 길이의 입력

본 구조물은 중간모멘트골조와 철골 특수 중심 가새 골조를 가진 이중골조 시스템입 니다. 따라서 두 가지 지진력 저항시스템을 모두 지정해 주어야 합니다. 이중모멘트골 조와 같이 두 가지 지진력 저항 시스템을 지정하는 방법은 먼저 Frame을 중간 모멘트 골조로 지정하고 Brace를 선택하여 특수 중심 가새 골조로 지정합니다.⁹

- 1. Main Menu 에서 Design > Design > Steel Design > Design Code 선택
- 2. Design Code에서 'KSSC-LSD16' 확인
- 3. All Beams/Girders are Laterally Braced에 '√' 표시 [®]
- 4. Check Beam/Column Deflection에 '✓' 표시 [⊕]
- 5. Apply Special Provisions for Seismic Design 에 '✓' 표시하고 Structure Type에서 'Intermediate Moment Frames' 선택

Ste	eel Design Code
	Design Code : KSSC-LSD16 🔹
	All Beams/Girders are Laterally Braced
	Apply Special Provisions for Seismic Design
	Seismic Load Resisting System
	System : 🛛 Intermediate Moment Frames 👻
	Consider strong column-weak beam on last floor
	OK Close
	민준 서게기즈 미 기지려 편하니 시테 서태

Check Beam/Column Deflection을 체크하게 되 면 자동 코드체킹 후에 테 이블에서 처짐검토결과가 출력됩니다. 처짐검토를 사용자가 직 접 검토하는 경우에는 이 옵션을 체크오프 하면 코 드체킹 테이블에 NG여부 가 출력되지 않습니다.

- 1. Work Tree > Properties > Material에서 Brace를 더블클릭으로 선택
- 2. Main Menu 에서 Design > Design > Steel Design > Seismic Load Resisting System by Member 실행
- 3. Seismic Load Resisting Systems에서 'Special Concentrically Braced Frames' 선택
- 4. Check for Brace Slenderness Ratio (4*SQRT[E/Fy]) 에 '✓' 표시 확인
- 5. Apply 버튼 클릭

그림 6.6 설계기준 및 지진력 저항시스템 선택 (2)

6-3 Steel Code Check

설계변수의 입력이 완료되면 철골부재 강도검증을 수행합니다. 강도검증은 모델에 포함된 전체 요소를 대상으로 수행합니다.

원하는 대상을 선택한 상태에서 강도검증을 수행하면 선택된 부재를 대상으로 철골부재 강도검증이 수행됩니다.

이 장에서는 설계결과를 검토하여 성능이 부족한 단면은 적절한 단면으로 변경하고 단면번호의 부여가 적절하지 못한 부재에 대하여 이를 수정하는 과정과 이들을 해석 모델에 반영하여 재해석 및 재설계를 수행하는 과정을 설명합니다.

- 1. Main Menu에서 Design > Design > Steel Design > Steel Code Check 선택
- 2. Code Checking Result Dialog의 >> 버튼 클릭
- 3. Result View Option의 'NG'선택 (그림 6.7 참조)
- 4. Select All 버튼 클릭
- 5. 그림 6.7의 Graphic... 버튼 클릭
- 6. 그림 6.8의 설계결과 요약계산서에서 계산내용 확인 *
- 7. 🔂 Close 버튼 클릭
- 8. 그림 6.7의 ❶에서 Change... 버튼 클릭
- 9. Property No. 선택란에 Section ID 확인
- 10. Limit Combined Ratio from 0.8 to 1.0 확인(해당 강도비 범위의 부재 찾기)
- 11. Change Steel Properties Dialog의

 12. 'H-304×301×11/17'을 선택하고
- Search Satisfied Section Change & Close 비튼 클릭

클릭

- 13. Code Checking Result Dialog에서 설계결과 OK 만족 확인
- ▶ Detail... 버튼을 눌
 러서 보다 상세한 계산근
 거를 확인할 수 있습니다.

♀ Change 버튼은 DB의 단면 중 사용자가 지정한 설계조건을 만족 하면서 응력비가 지정범 위 이내인 단면 List를 출 력하며, 사용자가 선택한 단면으로 설계용 데이터 를 변경합니다. 단, 해석모 델과는 무관합니다.

 ♀ Connect Model View에 '√' 표시한 후 임의의 단면을 선택하면 Model Window
 에서도 해당 단면이 Select 됩니다.

Code : KSSC-LSD16 Use : KN , m Primary Sorting Option Sorted by Member Change Update SECT MEMB																				
СН	MEMB	SECT	SE	Section	n		Len	Ly	Ch	Ку	B1y	B2y	PotPo	Pu	Muy	Muz	Vuy	Vuz	Tu	Def
к	COM	SHR	L	Material	Fy	LUB	Lb	Lz		Kz	B1z	B2z	Ratec	pPn	pMny	pMnz	pVny	pVnz	pTn	Defa
NG	57	2001	Г	1-3BR2, H 294x3	302x12/12	10	6.70820	6.70820	1.000	1.000	1.321	1.000	-	-1883.2	0.00000	0.00000	0.00000	0.00000	0.00000	
							Popul	#165000	stics											
Select All Unselect All Re-calculation << All OK ING View RatPc > 0.4 Graphic Detail Summary Close Summary by LCB Copy Table																				

그림 6.7 자동설계 결과 대화상자

Prop No : 2001	🔹 🎒 Print	🎒 Print All	월 Close		Save		
Design Infor	mation					Z	
Design Code Unit System	: KSSC-LSD16 : kN, m				<u>↑</u> ²⁶		
Member No	: 57				8 +		
Material	: SS275 (No:3) (Fy = 275000, Es =	210000000)			0 4	0.012	
Section Name	: 1-3BR2 (No:2001) (Rolled : H 294x30)	2x12/12).				0.302	
Member Length	: 6.70820						
2. Member For	ces				Depth Top E Width	0.29400 Web Thick	0.01200
Axial Force	Fxx = -1883	.2 (LCB: 10	D, POS:J)		Bot.F Width	0.30200 Bot.F Thick	0.01200
Bending Moments	s My = 0.000	00, Mz = 0.	. 00000		Area Dub	0.01077 Asz	0.00353
End Moments	Myi = 0.000	00, Myj = O.	.00000 (for	Lb)	lyy	0.00017 Izz	0.00006
	Myi = 0.000	00, Myj = O.	.00000 (for	Ly)	Ybar Syy	0.15100 Zbar 0.00115 Szz	0.14700 0.00037
	Mzi = 0.000	00, Mzj = O.	.00000 (for	Lz)	ry	0.12500 rz	0.07160
Shear Forces	Fyy = 0.00	000 (LCB: 4	41, POS:J)				
3. Design Para	meters	L., C.75	2000		70000	LL C 70000	
Unbraced Length	S	Ly = 0.70	J82U, LZ	= 0	n 70820, In	LD = 6.70820	
Effective Length F	actors	Ky = 1.	.UU, KZ =	1.0	U		
Moment Factor / E	sending Coefficient						
		$C_{WV} = 1$	00 00	1.0	0 (h -	1 00	
. Checkina Re	sults	Cmy = 1.	.00, Cmz =	1.0	0, Cb =	1.00	
 Checking Re Slenderness Ration 	∍sults	Cmy = 1.	.00, Cmz =	1.0	0, Cb =	1.00	
4. Checking Re Slenderness Rati KL/r	• • = 93.7 < 11	Cmy = 1. 3.5 (Memb:57	.00, Cmz = 7, LCB: 10).	1.0	0, Cb =	1.00	0.K
4. Checking Re Slenderness Ratii KL/r Axial Strength	• • = 93.7 < 11	Cmy = 1. 3.5 (Memb:57	.00, Cmz = 7, LCB: 10).	1.0	0, Cb =	1.00	0.K
L. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi	esults • = 93.7 < 11 Pn = 1883.17/16	Cmy = 1. 3.5 (Memb:57 37.14 = 1.150	.00, Cmz = 7, LCB: 10).) > 1.000	1.0	0, Cb =	1.00	0.K N.G
4. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength	esults = 93.7 < 111 Pn = 1883.17/16	Cmy = 1. 9.5 (Memb:57 37.14 = 1.150	.00, Cmz = 7, LCB: 10).) > 1.000	1.0	0, Cb =	1.00	0.K N.G
4. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muy/ph	esuits = 93.7 < 111 iPn = 1883.17/16 niMny = 0.000/27	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000	.00, Cmz = 7, LCB: 10).) > 1.000) < 1.000	1.0	0, Cb =	1.00	о.к N.G о.к
4. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muz/př	esults = 93.7 < 111 iPn = 1883.17/16 iMny = 0.000/27 iMnz = 0.000/12	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000 1.874 = 0.000	.00, Cmz = 7, LCB: 10).) > 1.000) < 1.000) < 1.000	1.0	0, Cb =	1.00	0.K N.G 0.K 0.K
 Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muz/pt Muz/pt Combined Strengt 	esults = 93.7 < 111 iPn = 1883.17/16 iMny = 0.000/27 iMnz = 0.000/12 th (Compression+Ber	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000 1.874 = 0.000 dding)	.00, Cmz = 7, LCB: 10).) > 1.000) < 1.000) < 1.000	1.0	0, Cb =	1.00	0.K N.G 0.K 0.K
 Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muz/pt Combined Streng Pu/phi 	esults = 93.7 < 111 iPn = 1883.17/16 iMny = 0.000/27 hiMnz = 0.000/12 th (Compression+Ber Pn = 1.15 > 0.20	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000 1.874 = 0.000 iding)	.00, Cmz = 7, LCB: 10). 3 > 1.000 3 < 1.000 3 < 1.000	1.0	0, Cb =	1.00	0.K N.G 0.K 0.K
4. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muz/pt Combined Streng Pu/phi Rmax =	esults = 93.7 < 111 iPn = 1883.17/16 iMny = 0.000/27 iMnz = 0.000/12 th (Compression+Ber Pn = 1.15 > 0.20 = Pu/phiPn + 8/9+ [I	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000 1.874 = 0.000 ding) Muy/phiMny +	.00, Cmz = 7, LCB: 10). 3 > 1.000 3 < 1.000 3 < 1.000 Muz/phiMnz]	1.0	0, Cb =	1.00	0.K N.G 0.K 0.K N.G
4. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muz/pt Combined Streng Pu/phi Rmax = Shear Strength	esults = 93.7 < 111 iPn = 1883.17/16 hiMny = 0.000/27 hiMnz = 0.000/12 (th (Compression+Ber Pn = 1.15 > 0.20 = Pu/phiPn + 8/9+[1	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000 1.874 = 0.000 iding) Muy/phiMny +	.00, Cmz = 7, LCB: 10).) > 1.000) < 1.000) < 1.000 Muz/phiMnz]	1.0	0, Cb =	1.00	0.K N.G 0.K 0.K N.G
4. Checking Re Slenderness Rati KL/r Axial Strength Pu/phi Bending Strength Muz/pt Combined Streng Pu/phi Rimax = Shear Strength Yu/py	esults = 93.7 < 111 iPn = 1883.17/16 iMny = 0.000/27 iMnz = 0.000/12 ith (Compression+Ber iPn = 1.15 > 0.20 = Pu/phiPn + 8/9+[i iVny = 0.000 < 0.000	Cmy = 1. 0.5 (Memb:57 37.14 = 1.150 0.090 = 0.000 1.874 = 0.000 dding) Muy/phiMny + 1.000	.00, Cmz = 7, LCB: 10). 0 > 1.000 0 < 1.000 Muz/phiMnz]	1.0	0, Cb =	1.00	0. K N. G 0. K 0. K N. G 0. K

그림 6.8 설계결과 요약계산서

Property No. 2001 Unit : m Open MGB File From To From To KS Same H 0 0 Same B1 0 Same tw 0 H Same B2 0 Same tt2 0 Limit Combined Ratio from 0,8 to 1 Search Satisfied Section									
Limit Combined Ratio from 0.8 to 1									
Print All Properties									
Section	Section CHK SE LCB COM SHR H B AREA								
H 440x300x11/18	OK		10	0.800	0.000	0.4400	0.3000	0.0157	
H 482x300x11/15	OK		10	0.895	0.000	0.4820	0.3000	0.0146	
H 390x300x10/16	OK		10	0.897	0.000	0.3900	0.3000	0.0136	
H 434x299x10/15	OK		10	0.933	0.000	0.4340	0.2990	0.0135	
H 304x301x11/17	OK		10	0.892	0.000	0.304	0.301	0.0135	
H 300x305x15/15	OK		10	0.907	0.000	0.3000	0.3050	0.0135	
H 386x299x9/14	OK		10	0.954	0.000	0.3860	0.2990	0.0120	
H 300x300x10/15	OK		10	0.989	0.000	0.3000	0.3000	0.0120	
Sorted by O H O B O Area Change & Close Close Change									

그림 6.9 Change Steel Properties 대화상자

Change & Close 버튼을 클릭하면 검색한 단면에 대하여 재설계를 수행하고 결과를 출력합니다.

철골부재들의 설계 결과를 그래프로 확인합니다.

- 1. Result View Option 선택란에 All 선택
- 2. . 비튼 클릭, Code Checking Result Dialog를 최소화
- 3. 그림 6.10의 ❷에서 Model View 선택
- 4. View Result Ratio... 버튼 클릭
- 5. Result Ratio View Dialog에서 Section NO. '401' 선택
- 6. Ratio Limit를 From '0' To '0.9'입력
- 7. Select Elements 버튼 클릭, 모델뷰에서 선택된 부재 확인.
- 8. 그림 6.10의 ❶에서 Show Graph of Result Ratio 버튼 클릭
- 9. Close 버튼 클릭
- 10. 2-4SG1이름의 30개 보 부재의 강도비를 그래프로 확인

그림 6.10 단면 강도비의 그래프 확인

6-4 설계 결과를 반영한 재해석/설계

Code Checking Result Dialog에 Change 기능을 이용하여 수정한 단면데이터를 해석 모델에 반영하고, Graph에서 검토한 단면번호를 수정하여 재해석 및 재설계를 수행합 니다.

- 1. Code Checking Result Dialog에서 Update... 버튼 클릭
- 2. Update Changed Properties Dialog에서 단면번호 '2001'에 '√' 표시
- 3. 그림 6.11의 ①에서 < 버튼 클릭
- 4. "해석/설계 결과가 삭제됩니다. 계속할까요?" 메시지 확인한 후

예(Y) 버튼 클릭

- 5. Close 버튼 클릭
- 6. Work Tree > Properties > Section 리스트중에 2001: 1-3BR2에서 마우스 우클릭
- 7. 활성화된 Context Menu에서 Properties클릭
- 8. 1-3BR2단면이 변경된 단면으로 적용됨을 확인하고, 대화창 [OK]클릭
- 9. 🏠 Analysis 클릭

Properties Before Change Properties After Change							
SECT	Section	*		SECT	SE	Section	*
101	1-2C1	_		502		5-RSG2, H 500x200x10/16	
102	3-4C1	-		503		5-RSG3, H 400x200x8/13	
103	5-7C1		0	504		5-RSG4, H 700x300x13/24	
104	8-10C1		\square	505		5-RSG5, H 582x300x12/17	
105	11-13C1			506		5-RSB1, H 346x174x6/9	
106	106 14-15C1					1-3BR1, H 294x302x12/12	
151	1-2C1A			1002		4-10BR1, H 294x200x8/12	
152	3-4C1A, H 400x400x13/21			1003		11-15BR1, H 200x200x8/12	
153	5-7C1A, H 400x400x13/21			2001	V	1-3BR2, H 304x301x11/17	_
154	8-10C1A, H 400x400x13/21			2002		4-10BR2, H 294x200x8/12	=
155	11-13C1A, H 400x400x13/2	÷		2003		11-15BR2, H 200x200x8/12	+

그림 6.11 Update Changed Properties Dialog

요소의 강성이 변하면 그 부재는 물론 인접한 부재의 부재력에도 영향을 줍니다. 요소 의 단면을 변화하여 재해석을 수행하였으므로 모든 부재에 대하여 재설계를 수행합 니다.

- 1. Main Menu에서 Design > Design > Steel Design > Steel Code Check 실행
- 2. Code Checking Result Dialog에서 모든 부재의 강도비 만족 확인
- 3. 1-2C1 선택, [Graphic] 클릭, 요약계산서 확인
- 4. [Detail] 클릭, 상세계산서 확인

재해석시 해석결과와 설 계결과는 삭제되었지만 입력된 설계변수는 그대 로 저장됩니다.

ortec	i by 🔘	Member Property	r ,	Change Update	·	⊖ SE	ECT ©) MEMB												
сн	MEMB	SECT	SE	Section		Len	Ly	01	Ку	B1y	B2y	DetDe	Pu	Muy	Muz	Vuy	Vuz	Tu	Def	Γ
к	COM	SHR	L	Material Fy	1.08	Lb	Lz	CD	Kz	B1z	B2z	RaiPC	pPn	pMny	pMnz	pVny	pVnz	pTn	Defa	1
OK	0.617	0.187	-	SS275 275000	1.0	3.00000	6.00000	1.000	1.000	1.000	1.000		2081.97	306.381	66.3300	0.00000	528.000	0.00000	0.02000	1
or	318	504	E	5-RSG4, H 700x300x13/2	10	10.8000	10.8000	1.000	1.000	1.000	1.000		0.00000	-1265.0	0.00000	0.00000	478.816	0.00000	-0.0198	1
	0.821	0.335	1	SS275 265000	10	3.00000	10.8000	1.000	1.000	1.000	1.000	-	5616.68	1540.71	267.120	0.00000	1446.90	0.00000	0.03600	
ок	315	505		5-RSG5, H 582x300x12/1	9	10.8000	10.8000	1 000	1.000	1.000	1.000		0.00000	-623.96	0.00000	0.00000	238.761	0.00000	-0.0186	
	0.661	0.221	· · ·	SS275 265000		3.00000	10.8000	1.000	1.000	1.000	1.000	-	4161.82	944.460	189.130	0.00000	1110.46	0.00000	0.03600	
ок	868	506	E.	5-RSB1, H 346x174x6/9	6	6.00000	6.00000	1 000	1.000	1.000	1.000		0.00000	129.630	0.00000	0.00000	86.4199	0.00000	-0.0165	
	0.732	0.252	· .	SS275 275000	-	0.00000	6.00000		1.000	1.000	1.000		1303.83	177.210	34.6500	0.00000	342.540	0.00000	0.02000	
оκ	49	1001	Ы	1-3BR1, H 294x302x12/1	11	6.70820	6.70820	1.000	1.000	1.245	1.000	-	-1523.1	0.00000	0.00000	0.00000	0.00000	0.00000	-	
	0.930	0.000		SS275 275000		6.70820	6.70820		1.000	2.493	1.000		1637.14	270.090	121.874	0.00000	0.00000	0.00000	-	
ок	229	1002	Е	4-10BR1, H 294x200x8/12	11	4.84149	4.84149	1.000	1.000	1.071	1.000	-	-661.72	0.00000	0.00000	0.00000	0.00000	0.00000	-	
	0.664	0.000		SS275 275000		4.84149	4.84149		1.000	1.873	1.000		996.225	172.008	61.0580	0.00000	0.00000	0.00000	-	4
ок	652	1003		11-15BR1, H 200X200X8/	12	5.16140	5.16140	1.000	1.000	1.076	1.000	-	-259.97	0.00000	0.00000	0.00000	0.00000	0.00000	-	
_	0.297	0.000		55275 275000 4 3883 H 304+304+44/4	,	5.16140	5.10140		1.000	1.204	1.000		4082.6	112.374	0.00000	0.00000	0.00000	0.00000	-	
ок	0.020	0.000	Г	CC275 265000	10	6.70820	6.70020	1.000	1.000	2 220	1.000	-	-1902.5	359.008	193 553	0.00000	0.00000	0.00000	-	1
-	240	2002		4-10BP2 H 294y200y8/1	>	4 84149	4 84149		1.000	1.076	1.000		-703.83	0.00000	0.00000	0.00000	0.00000	0.00000	-	ł
ок	0.706	0.000		SS275 275000	9	4 84149	4 84149	1.000	1.000	1.983	1.000	-	996 225	172 008	61.0580	0.00000	0.00000	0.00000	-	-
	660	2003		11-15BR2, H 200x200x8/		5.16140	5.16140		1.000	1.086	1.000		-292.34	0.00000	0.00000	0.00000	0.00000	0.00000	-	1
ок	0.334	0.000	Г	SS275 275000	10	5,16140	5,16140	1.000	1.000	1.307	1.000	-	874,166	112.374	60.3171	0.00000	0.00000	0.00000	-	1
Co Sele	Connect Model View View Result Ratio elect All Unselect All Re-calculation C																			

그림 6.12 재설계 결과확인

6. 부재 설계

$ \begin{array}{c c c c c c } \hline \hline$	Preview Window		
1. Design from store human in stores 1200 Sach there : 220 (169) (16) (16) (16) (16) (16) (16) (16) (16	Prop No : 101 - Print 🖨 Print All 📳	Close 📱 Save	
2. Member Forces Aus from For - 1128 (U01 E, F(51)) Beelog Mores M - 613.238, M - 214.413 Fel Mores M - 613.238, M - 214.413 Beelog Mores M - 613.238, M - 214.413 Fel Mores M - 613.238, M - 214.413 Beelog Mores M - 613.238, M - 214.413 Mores factor Sector M - 613.238, M - 214.413 Beelog Mores M - 613.238, M - 214.413 Mores factor Sector M - 613.238, M - 214.238 Mores factor Sector M - 102.428 Mores factor	1. Design Information Design Code : KSSC-LSD16 Unit System : KN, m Member No : 96 Material : SM355 (No.2) (Fy = 335000, Es = 210000000) Section Name : 1-2C1 (No:101) (Built-up Section). Member Length : 50000		
3. Design Parameters Unit we 5,0000, Lz = 5,0000, Lz = 5,0000, Lb = 5,0000 Ender Lange Frace, Burding Configer Op = 0.05, Oz = 0.15, D = 1.00 4. Checking Results Op = 0.5, Oz = 0.15, D = 1.00 Burdings Reide N/1 - 7,7 + 20.0 (Mex):8, L00 21)	2. Member Forces Axial Force Fxx = -11251 (LC8: 6, PC Bending Moments My = 819.238, Mz = 214.41 End Moments Myi = 819.298, Myj = -769.2 Myi = 819.298, Myj = -769.2 Mzi = 214.413, Mzj = -190.2 Shear Forces Fyy = 111.133 (LC8: 7, F Fzz = 340.202 (LC8: 9, F	Depth 0.65000 Web Thick 0.4000 Top F Flitth 0.65000 Top F Thick 0.40400 Bot.F Width 0.65000 Bot.F Thick 0.44400 Bot.F Width 0.65000 Bot.F Thick 0.04400 Bot.F 0.05500 Bot.F Thick 0.04400 Bot.F 0.05500 Bot.F Thick 0.04400 20 (for Lb) Jyy 0.05656 122 0.05201 20 (for Ly) Syy 0.32500 Zbar 0.32500 Zbar 0.32500 255 (for Lz) y 0.27101 rz 0.15910 E POS:1/2) Fy 0.27101 rz 0.15910 E	
4. Checking Results Surdaments Hade NUT • 9.7 < 200.0 (Next): 35. LDS: 21)	3. Design Parameters Unbraced Lengths Ly = 5.00000, Effective Length Factors Ky = 1.00, Moment Factor / Bending Coefficient Cmy = 0.85,	Lz = 5.00000, Lb = 5.00000 Kz = 1.00 Cmz = 0.85, Cb = 1.00	
Image: Seady In 0 / 810 , Col 1 CAP NU	Stenderness Ratio KL/r = 37.7 < 200.0 (Memb:36, LC	28: 21)	
		Ready Ln 0 / 810 , Col 1	CAP NU

그림 6.13 최종 부재설계결과 요약/상세계산서 출력

7. 설계결과 물량 BOM 확인

해석모델의 전체 물량을 확인합니다..

- 1. Main Menu에서 Tools > Generator > Bill of Material 실행
- 2. 모든 항목에 체크 확인, OK 버튼 클릭
- 3. 부재별로 중량, 도장 면적 및 최종 중량 및 페인트 면적 확인

	Bill Of Material	
	Select BOM outputs	
	Beam-Truss Element BOM type1 Beam-Truss Element BOM type2 Beam-Truss Element BOM type3 BuiltUp Plate BOM type1 BuiltUp Plate BOM type2 BOM by Material BOM by Material	
	Quitruit Options	
	✓ Insert form feed symbol at each output end	
	File Name : D:₩Steel(KBC2016),bom	browse
	OK	Cancel
📅 MIDAS,	/Text Editor - [Steel(KBC2016).bom]	
🚰 File	Edit View Window Help	_ <i>B</i> ×
 D 💕 (◼ ♣ ◘. ☵ ἔ ☜ ቈ 兽 ⊨ ♠ Ⴥ ⊵ ≃ 兽 ★ % % %	🕻 a+b A 🕂 🔂 🖓 🗣 🖽 🗖 🖏 🦹
00001 00002 00003	**************************************	**************************************
00004		*****
00006 00007	XXX XXX XX XX XXXXXXX XXXXXXX XX XXXX XXXX XX	<pre>xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</pre>
00008	<u> </u>	
00011		
00013 00014	XXX XX XXX XXXXXXXX XXX XX XX	XXXXXXX /Gen
00015	Gen 2019	alamu Ca. 14d
00018 00019	ALL RIGHTS RESERVED,	510gy C0.,Elu.
00020 00021 00022	***************************************	**********
00023	BILL OF MATERIAL	
00025 00026 00027 00028	9 BEAM & TRUSS BOM TYPE1 SECT ID,SECT NAME, MATERIAL	Unit System : kN , m
00029 00030 00031 00032	SECT SECTION NAME MATERIAL DENSITY LENGTH ID ID NAME	H PAINT AREA WEIGHT INNER OUTER
00034 00035	401 2-4\$61 1 Girder_\$\$275 7,698e+001 3,600e+ 402 2-4\$62 1 Girder_\$\$275 7,698e+001 9,000e+0	002 0,000e+000 7,121e+002 3,725e+002 001 0,000e+000 1,514e+002 6,704e+001
00036 00037	403 2-4563 1 Girder_SS275 7,698e+001 7,200e+0 404 2-4564 1 Girder_SS275 7,698e+001 1,296e+0	001 0,000e+000 1,211e+002 5,363e+001 002 0,000e+000 3,593e+002 2,668e+002
00038 00039	405 2-4585 1 Girder_SS275 7,698e+001 1,296e+0 406 2-4581 1 Girder_SS275 7,698e+001 1,290e+0 501 5,505 7,698e+001 1,200e+0	JU2 0,000e+000 3,048e+002 1,920e+002 001 0,000e+000 2,137e+001 6,482e+000 002 0,000e+000 2,848e+002 1,400e+002
00041	502 5-RS62 1 Girder_SS275 7,698e+001 3,600e+(503 5-RS63 1 Girder_SS275 7,698e+001 2,880e+(002 0.000e+000 6.408e+002 3.165e+002 002 0.000e+000 4.562e+002 1.865e+002
00043 00044	504 5-RS64 1 Girder_SS275 7,698e+001 5,184e+0 505 5-RS65 1 Girder_SS275 7,698e+001 5,184e+0	002 0,000e+000 1,334e+003 9,398e+002 002 0,000e+000 1,213e+003 6,964e+002
00045 00046	506 5-RSB1 1 Girder_SS275 7,698e+001 7,200e+0 101 1-201 2 Column_SM355 7,698e+001 4,400e+0 102 2-401 2 Column_SM355 7,698e+001 4,400e+0	001 0,000e+000 9,907e+001 2,920e+001 001 0,000e+000 1,681e+002 2,699e+002 001 0,000e+000 1,185e+002 1,732e+002
00048 00049	103 5-7C1 2 Column_SM355 7,698e+001 4,560e+(104 8-10C1 2 Column_SM355 7,698e+001 4,720e+(001 0.000e+000 1.474e+002 2.033e+002 001 0.000e+000 1.527e+002 1.919e+002
00050 00051	105 11-13C1 2 Column_SM355 7,698e+001 5,040e+0 106 14-15C1 2 Column_SM355 7,698e+001 3,360e+0	001 0.000e+000 1.482e+002 1.749e+002 001 0.000e+000 9.878e+001 1.166e+002
00052 00053 00054	TST F=∠CTA 2 COLUME_SM355 7,5986+001 2,200e+ 152 3-4CTA 2 COLUME_SM355 7,6986+001 1,760e+(153 5-7CTA 2 COLUME_SM355 7,6986+001 2,280e4	JUL 0,0000+000 5,8520+001 5,8020+001 001 0,0000+000 4,1780+001 2,9630+001 001 0,0000+000 5,4130+001 3,8380+001
00055 00056	154 8-10C1A 2 Colum_SM355 7,698e+001 2,360e+ 155 11-13C1A 2 Colum_SM355 7,698e+001 2,360e+	001 0,000e+000 5,603e+001 3,973e+001 001 0,000e+000 5,982e+001 4,243e+001
00057 00058	156 14-15C1A 2 Column_SM355 7,698e+001 1,680e+0 201 1-2C2 2 Column_SM355 7,698e+001 4,400e+0	001 0,000e+000 3,988e+001 2,828e+001 001 0,000e+000 1,549e+002 2,482e+002
4 Ready]	
neauy		

그림 6.14 설계결과 물량 BOM 확인