NEW GeoXD

Ver 5.2.0. 개정내용

Copyright © 1989~2023. MIDAS Information Technology Co., Ltd. ALL RIGHTS RESERVED.

NEW GeoXD V520

Drawing & Analysis

Enhancements

1. Drawing

1.1 CAD 최신 버전 호환

- 1.2 국가표준(강종) 및 KS(18) DB 추가
- 1.3 기타 개정 사항 (Drawing)
 - 1) HI-Strut 12m DB 삭제
 - 2) Analysis 연동을 위한 *.GXT 파일 개선

2. Analysis

- 2.1 KDS 가설흙막이 설계기준 (2022) 추가
- 2.2 띠장 설계시 앵커의 수직분력 고려
- 2.3 측면말뚝 설계시 수직분력 고려 유형 추가
- 2.4 Kicker Blolck 수동토압 감소계수 설정
- 2.5 기타 개정 사항 (Analysis)
 - 1) 최소작업공간 값 변경
 - 2) C.I.P. 설계시 철근 피복두께 값 변경
 - 3) 안정성 검토 안전율 저장

1.1 CAD 최신 버전 호환

▶ 파일 > 들여오기 > DWG 들여오기

기존에는 dwg 2010 버전까지 들여오기 기능을 호환하고 있었으며, 상위버전의 dwg 파일을 들여오기 위해서는 사용자가 직접 dwg 파일을 2010 버전 이하로 저장하여 GeoXD Drawing에 들여오기 할 수 있었습니다. V520 에서는 CAD 버전 호환성을 개선하여 AutoCAD 2023에서 저장된 dwg 파일을 들여오실 수 있으며, dwg 2013 및 2018 버전의 dwg 파일을 다운그레이드하여 저장하는 작업 없이 손쉽게 불러오실 수 있습니다.

DWG 들여오기 TIP : Audit 및 Purge 로 도면 파일 최적화 후 들여오기

도면 작업의 특성상 다수의 작업자가 파일을 수정하거나, 기존 도면을 바탕으로 수정 작업을 진행하면서 불필요한 Data를 포함하고 있는 경우가 많기 때문에 들여오기 전 Audit, Purge 기능을 통해 파일을 최적화하는 것이 좋습니다.

전버전 호환	버전	버전 내부 버전 오토캐드 버경	
	DWG 2018	AC1032	AutoCAD 2018 ~ 2023
	DWG 2013	AC1027	AutoCAD 2013 ~ 2017
	DWG 2010	AC1024	AutoCAD 2010 ~ 2012
	DWG 2007	AC1021	AutoCAD 2007 ~ 2009
	DWG 버전		

Drawing 개정내용

1.2 국가표준(강종) 및 KS(18) DB 추가

Drawing 개정내용

1.3 기타 개정 사항 (Drawing)

> HI-Strut 12m DB 삭제

HI-Strut DB에서 단종된 12m를 삭제하여, 0.5/1/2/3/6/9/11m 의 길이로 도면과 수량산출서를 제공하도록 수정하 였습니다.

➢ Analysis 연동을 위한 ★.GXT 파일 개선

GXT 버전을 업그레이드 하여, Analysis 와의 연동성을 개선했습니다. Drawing에서 탑재된 KS(18) 신강종으로 모델 링을 수행하고 GXT 파일을 통해 Analysis로 연동하여 즉시 해석 수행 및 설계 검토를 진행하실 수 있습니다.

MIDAS

GeoXD Perfection*

멈추지 않는 진화, 비교할 수 없는 완벽함

2.1 KDS 가설흙막이 설계기준 (2022) 추가

설계 〉 설계 옵션(F6) 〉 강재의 허용응력 기준 KDS 가설흙막이 설계기준 (2022) 기준이 새롭게 탑재되었습 설계 옵션 정의시 강재의 허용응력 기준에서 KDS 설계기준 가설흙막이 설계기준 KDS 21 30 00 : 2022 에서는 띠장 설 해당 기준을 적용하여 앵커에 의한 연직분력을 고려한 띠장	습니다. KS(18) 국가표준(강종)을 사용한 모델에서 (2020) 및 (2022) 기준이 활성화됩니다. <mark>실계시 지반 앵커로 인한 연직분력</mark> 을 고려하도록 하고 있으며, 설계 계산을 수행하실 수 있습니다.
Project Setting	
일반 프로젝트명 가설훍막이 설계기준 KDS 21 30 00 : 2022 작성 날짜 2023-4-01 01:37 오후 • • • 국가표준(강종) KS(18) ~	
Project Setting	
새파일 생성 후 Project Setting에서 국가표준(강종)을 KS(18) 또는 KS(04)로 선택하실 수 있으며, KS(18)을 선택하여 모델링하고 해석을 수행하시면, 해당 강종에 대한 허용응력을 다루고 있는 KDS 설계기준으로 설계를 수행하실 수 있습니다.	설계옵션 × 강재 강재의 허용응력 기준 KDS 설계기준(21 30 00) (2022) ↓ 기준별 상세설정 재사용 및 부식을 고려한 허용응력 보정계수 0.9

* KDS 설계기준은 MODS 서비스 기능입니다.

https://www.midasuser.com/ko

| 강재의 허용응력 기준 |

GeoXD Perfection⁺ 멈추지 않는 진화, 비교할 수 없는 완벽함

2.2 띠장 설계시 앵커의 수직분력 고려

2.2 띠장 설계시 앵커의 수직분력 고려

설계 > 지보재 > 띠장 > 앵커 수직분력 고려 옵션②
GeoXD Analysis에서 기존에 제공하는 더블띠장 설계 방법은 9가지였으며, V520에서는 앵커의 수직분력 고려 옵션 에 따라 9가지 설계 방법에서 추가적으로 앵커의 수직분력을 고려한 설계를 수행하실 수 있습니다.
또한, 띠장 설계시 하중형태와 단면력산정 방법을 등분포하중 및 연속보설계로 적용할 경우에는 정착장치와 H형강의
용접 여부에 따라 띠장 마찰 계수를 적용하여 수직방향 단면력을 계산할 수 있으며, 적용한 계산식은 "황승현(2010), 「실무자를 위한 흙막이 가설구조의 설계」, 씨아이알." 을 참고하였습니다.

GeoXD Perfection⁺ 멈추지 않는 진화, 비교할 수 없는 완벽함

2.2 띠장 설계시 앵커의 수직분력 고려

▶ 설계 > 지보재 > 띠장 > 앵커 수직분력 고려 옵션③

최종적으로 V520에서는 12가지의 계산 방식이 추가됨에 따라 총 21가지의 더블띠장 설계를 수행하실 수 있습니다.

	설계옵션(F6)		띠장 설계				
구분	축력 고려	합성응력 산정시 좌굴 고려	하중형태	단면력산정	앵커 수직분력 고려	앵커의 정착장치 시공방법	비고
Case 1					Х	Х	기존
Case 2				연속보	0	용접할 경우	추가
Case 3			등분포		0	용접하지 않을 경우	추가
Case 4	Х	Х		단순보	Х	Х	기존
Case 5					0	X	추가
Case 6			집중하중 단	다스ㅂ	Х	Х	기존
Case 7					0	Х	추가
Case 8		х	등분포	연속보	Х	Х	기존
Case 9					0	용접할 경우	추가
Case 10					U	용접하지 않을 경우	추가
Case 11				단순보	Х	Х	기존
Case 12					0	Х	추가
Case 13			진준하주	단순보	Х	Х	기존
Case 14	0		80,10		0	Х	추가
Case 15	Ŭ	0	등분포	연속보	Χ	X	기존
Case 16					0	용접할 경우	추가
Case 17						용접하지 않을 경우	추가
Case 18				단순보 ·	Х	Х	기존
Case 19					0	X	추가
Case 20			진준하준	중 단순보 ·	Х	Х	기존
Case 21					0	X	추가

GeoXD Perfection⁺

멈추지 않는 진화, 비교할 수 없는 완벽함

2.3 측면말뚝 설계시 수직분력 고려 유형 추가

설계 〉 말뚝 〉 측면말뚝 〉 지보재 수직분력 [] 측면말뚝에 압축응력을 유발하는 유형의 <mark>지보재에 대해 수직분력을 자동으로 계산</mark> 하여 체크박스 선택으로 설계 계산 에 적용할 수 있도록 기능을 추가하였습니다. (기존에는 Earth Anchor 유형의 수직분력만 계산) 해석 결과로 산정된 지보재 반력으로부터 단면상의 <mark>설치각도를 고려</mark> 하여 측면말뚝에 작용하는 수직방향의 분력을 계 산합니다. (단 측면말뚝에 압축응력을 발생시키는 하향의 수직분력만을 계산하고, 상향의 수직분력은 '0' 으로 계산되			ː스 선택으로 설계 계산 ː) ː 수직방향의 분력을 계 l분력은 '0' 으로 계산되
며, Raker 유형은 해당 기능에 고려되지 않습	·니다.) 계 산 계산세 《 설계계산서 생성시 출력 《 시공단계별 결과 출력 시공단계 선택 단면검토 구분 발생응력 허용응력 편정 활용력 전단응력 ····································	〈수직분력 계산〉 Pv = R x Sin(Θ) Pv : 수직분력 R : 반력 Θ : 설치 각도	지보재 수직분력 × ✓ 1. Strut ✓ 2. Earth Anchor1 ✓ 3. Rock Bolt ✓ 4. SoilNail ✓ 5. Tie Rod 수직분력 117.7286 kN 확인(0) 취소(℃)
│ 측면말뚝 설계 측면말뚝 설계 대화창 〉 하중 〉 지보재 수직분	분력에서 계산된 수직분력을	확인하실 수 있으며, 9	지보재 수직분력 우측 버튼으로
지보재 수직분력 대화창에 접근하여 체크 Or	n/Off에 따라 설계 하중에 수	직분력 반영여부를 결	정하실 수 있습니다.

GeoXD Perfection⁺ 멈추지 않는 진화, 비교할 수 없는 완벽함

2.4 Kicker Blolck 수동토압 감소계수 설정

➢ 설계 > 지보재 > Kicker Block > 수동 토압

Raker를 지지하는 블록 또는 말뚝에서의 수동토압에 의한 반력은 주동변위와 수동변위를 고려하여 감소시켜 정하여 야 하며, KDS 가설흙막이 설계기준에서는 아래 표와 같이 지반 종류별 예상 수동토압을 제시하고 있습니다.

지반 종류	예상 수동토압(Pp')		
매립토, 퇴적토	(1/2) Pp		
풍화토, 풍화암	(2/3) Pp		
연암 이상	Рр		
지반 종류별 예상 수동토압			
지반 종류별 예상 수동토압	Kicker Block 설계		

V520에서는 Kicker Block 설계시 수동토압 옵션을 추가하여, 지반 종류별로 수동토압을 감소시켜 정할 수 있습니다. Kicker Block 설계 대화창의 수동토압 우측 ... 버튼으로 지반 종류별 예상 수동토압 대화 창에 접근할 수 있습니다.

2.5 기타 개정 사항 (Analysis)

▶ 시공단계 자동생성(F2)시 최소작업공간 값 변경

KDS 가설흙막이 설계기준 (2022), "3.1.2 흙막이 구조물의 해석방법" 에서 굴착깊이와 관련한 개정 내용을 바탕으로 굴착 시공단계 자동생성(F2)시 최소작업공간의 디폴트 값을 기존 0.5m 에서 **1.0m**로 수정하였습니다.

▶ C.I.P. 설계시 철근 피복두께 값 변경

KDS 가설흙막이 설계기준, "3.3.2 부재의 단면설계"에서 C.I.P.와 관련한 내용을 바탕으로 C.I.P.설계시 철근의 피복 두께 디폴트 값을 기존 50mm에서 <mark>80mm</mark>로 수정하였습니다.

▶ 안정성 검토 안전율 저장(근입장검토, 보일링검토, 히빙검토)

KDS 가설흙막이 설계기준, "3.2.1 일반사항"에서 가설 흙막이 구조물의 안정성 검토와 관련하여 <mark>보일링 검토 안전율</mark> 의 디폴트 값을 기존 영구(장기)시 2.0 에서 <mark>가설(단기)시 1.5</mark>로 수정하고, 모델파일 저장시 수정 또는 변경한 가설흙 막이의 안정성 검토 <mark>안전율을 저장</mark>하도록 개선하였습니다.