

Release Note

Product Ver. : GTS NX Ver.250

Enhancements

1. Pre Processing		
1.1 Taper Section Group	(MODS)	
1.2 T / X 교차 인터페이스		
1.3 Bedding plane(조사공정보)	(MODS)	
1.4 Self weight(자중에 함수사용)		
1.5 동해석 상대결과 출력할 때, 기준점	체크	
1.6 SoilWorks 내보내기 강화	(MODS)	
1.7 수축하중 (Contraction)	(MODS)	

2. Post Processing	
2.1 다중스텝 그래프	
2.2 유량계산 기능개선(면선택 유량)	
2.3 침투해석 시간에 대한 결과그래프	
2.4 결과 Vector (절단면, 선에 컨투어와 벡터표현)	
2.5 결과변환 - 해석결과를 정적하중으로 변환	(MODS)
2.6 결과변환 - 해석결과를 침투 경계조건으로 변환	(MODS)
2.7 동해석 하중테이블 불러오기/내보내기	(MODS)

3. Analysis

3.1 CWFS 재료모델 (대심도 터널 해석에 주로사용) (MODS)3.2 D-min (일본 중앙전력연구소 제안모델)

1. Pre Processing

GTSNX V.250

1.1 Taper Section Group(Beam/Embedded Beam) (MODS)

Fnhancement

- 요소의 분할 위치와 무관하게 하나의 일정한 변단면으로 정의되도록 그룹화하여, 중간 단면크기를 자동으로 계산하는 기능입니다.
- 기존에는 요소 분할 위치에 따라 단면이 변화하는 속성을 각각 할당해야 하는 번거로운 모델링 과정을 거쳤습니다.
- 단면 변화구간에 해당 요소를 한 번에 선택하고, 시작 단면의 속성과 마지막 단면의 속성만 각각 i단과 j단 절점으로 선택하면 변단면이 자동 생성됩니다.

1. Pre Processing

1.2 T / X 교차 인터페이스

- Truss / Beam 요소가 T 혹은 X 자 형태로 교차하는 경우에도 주변 지반과의 인터페이스 생성을 추가 지원합니다. 3차원 모델의 경우 Shell 요소도 가능합니다.
- 단, T 혹은 X 자 형태로 인터페이스를 생성하기 때문에 "분리된 인터페이스 요소망으로 등록" 옵션은 지원되지 않습니다.

[2D 모델 트러스/보 요소 이용(T/X-교차타입)]

[3D 모델 쉘요소 이용 (T/X-교차타입]]

MODS

1. Pre Processing

- 1.3 Bedding plane(조사공정보) (MODS)
- "지층면 생성 위저드"에서 Excel 파일로 여러 지층 및 조사공 정보를 한 번에 불러오는 기능이 추가 되었습니다.
- 지층면은 동일한 지층이름을 기준으로 시추공 별 깊이를 보정하여 생성되며, 1개 지층면은 3개 이상의 조사공 정보를 정의해야 생성됩니다.
- 지층면 엑셀 샘플파일은 프로그램 설치 후 C:\Program Files\MIDAS\GTS NX\Sample 폴더에서 'Bedding Plane Sample.xlsx' 파일로 확인 가능합니다.
 - 지층면 생성 위저드 × A D G 1 [m] 지층면 2 Borejole name B1 B2 В3 Β4 Β5 3 1, 1, 10 1,20,10 20,40,7 40,25,10 3,40,10 Location 지층면 지층면 이름 4 5 No, name depth 조사공 정보 6 1 Bedding Plain 1 20 15 17 17 20 조사공 위치 2 Bedding Plain 2 5 -3 7 3 5 -3 6 위치 이름 3, 40, 10 B5 8 3 Bedding Plain 3 -4 -7 -6 9 지층 이름 정의.. 깊이 지층이를 (m) 1 Bedding Plain 1 20.0000 2 Bedding Plain 2 0.0000 3 Bedding Plain 3 -7.0000 4 IFIVELVESVEAVES 불러오기... 추가 수정 삭제 이격거리 (m) X축 0 Y축 0 형상세트 형상세트-1 - ... **I** 확인 취소 적용 [조사공 정보로 생성된 평면] [지층면 생성 위저드]

▪ 형상 > 면과 솔리드 > 지층면 > 불러오기

- 1. Pre Processing
- 1.4 Self weight(자중에 함수사용)
- 자중에 공간분포함수를 적용할 수 있습니다. 공간분포함수는 위치에 따라 입력된 값이 스케일링 되어 반영됩니다.

▪ 정적/사면 해석 > 하중 > 자중

1. Pre Processing

1.5 동해석 상대결과 출력할 때, 기준점 체크

- 동해석 시 특정 절점 기준으로 상대결과를 검토하고자 할 경우, '참조 절점' 옵션을 체크하여 기준이 되는 절점번호를 입력합니다.
- 체크해제 시에는 기존과 동일한 방식으로 상대결과를 계산합니다.
- 해석케이스 > 선형시간이력해석(모달), 선형시간이력해석(직접), 비선형시간이력해석, 2차원 등가선형해석, 비선형시간이력해석 + SRM > 결과제어

1. Pre Processing

1.6 SoilWorks 내보내기 강화 (MODS)

- "기하형상을 SoilWorks 중립파일로 내보내기"에 재질정보가 추가 되었습니다. GTSNX SoilWorks 간에 동일한 모델타입과 파라미터를 호환시켜 줍니다.
- 호환 가능한 재료모델은 Elastic, Mohr Coulomb, Modified Mohr Coulomb, von Mises, Tresca, Hoek-Brown, Duncan-Chang, Drucker Prager, D-min, Modified Cam Clay, Sekiguchi-Ohta(Inviscid), Sekiguchi-Ohta(Viscid) 총 12개 타입과 2D Equivalent는 SoilWorks > 동해석모듈 > Elastic(등가선형)으로만 호환됩니다. SoilWorks 침 투모듈에서는 von Mises, Tresca를 제외한 위 10개 타입이 재료 구분 없이 호환됩니다.
- 단, GTS NX에서 'Structure'가 체크되어 있는 경우에는 호환되지 않습니다. ※ (내보내기 한 중립파일의 지반물성 정보는 SoilWorks V480 이후 버전에서 연동가능)

MODS

1. Pre Processing

- 1.7 수축하중(Contraction) (1/2) (MODS)
- 쉴드터널 수축량을 하중으로 고려합니다. 2차원 모델에서는 Beam 요소를 3차원 모델에서는 Shell 요소를 선택하여 수축량을 적용할 수 있습니다.
- 수축량 값은 터널 원주방향의 수축량, 수축증가량값은 터널 굴착방향의 수축량, 참조깊이는 3차원 터널 굴착방향의 수축량을 계산하기 위한 기준 깊이를 의미합니다.

1. Pre Processing

GTSNX V.250

1.7 수축하중(Contraction) (2/2) (MODS)

Fnhancement

- 쉴드터널 수축량을 하중으로 고려합니다. 2차원 모델에서는 Beam 요소를 3차원 모델에서는 Shell 요소를 선택하여 수축량을 적용할 수 있습니다.
- 수축량 값은 터널 원주방향의 수축량, 수축증가량값은 터널 굴착방향의 수축량, 참조깊이는 3차원 터널 굴착방향의 수축량을 계산하기 위한 기준 깊이를 의미합니다.

 정적/사면 해석 > 하중 > 수축하중 	수축하중 정의 엘 보 미름 보 수축하중-1 대상형상 ₩ 대상선택	Property x-axis is 진행방향 Ref Depth
참조깊이 m	수축량 0%	
하중세트 수촉하중 ▼ 😻 🗐 🖉 확인 취소 적용	하중세트 <mark>수축하정</mark> ▼	

※ 모델링 시 주의사항

- 선택한 요소들이 원형형상인 경우에만 계산식이 성립
 (원형이 아닌 경우에도 선택한 요소들이 폐합되어 있으면 수축하중을 적용할 수 있으나, 올바른 결과를 얻을 수 없음)
- 3차원 모델의 Shell 요소는 그림과 같이 굴착방향이 Element CSys-X축이 되도록 좌표계 정렬 필요 (터널 굴착방향의 굴착폭을 자동계산하기 위함)

2. Post Processing

2.1 다중 스텝 그래프 (1/2)

- 선택한 절점/요소의 '위치 기준'으로 다중 스텝의 결과를 그래프로 그리는 기능입니다.
- 해석세트, 결과타입, 결과, 스텝, 절점/요소를 선택하고 '그래프'를 클릭합니다. 그래프 정의에서 'Axis'은 선택한 절점 혹은 요소의 실제 좌표를 의미하며, 그래프의 Y축에 배 치됩니다. 그래프 X축에 선택한 절점 혹은 요소의 결과 값이 배치됩니다

2.1 다중 스텝 그래프 (2/2)

- 여러 스텝의 결과를 선택한 절점/요소의 '위치 기준'으로 결과 그래프로 그리는 기능입니다.
- 해석세트, 결과타입, 결과, 스텝, 절점/요소를 선택하고 '그래프'를 클릭합니다. 그래프 정의에서 'Axis'은 선택한 절점 혹은 요소의 실제 좌표를 의미하며, 그래프의 Y축에 배 치됩니다. 그래프 X축에 선택한 절점 혹은 요소의 값이 배치됩니다

■ 공간상의 절점 위치를 고려하여 결과 그래프를 구성하므로, 구조부재의 변위 결과를 손쉽게 확인 가능

2.2 flow quantity (면선택 유량) (1/3)

- <mark>기존에 유량 측정은 유출이 발생하는 위치의 절점을 직접 선택 혹은 입력하고</mark> 한번 계산 후, 동일 위치의 결과를 확인 하기 위해서는 처음부터 작업을 반복해야 했습니다.
- 기존의 절점선택 방식(Node Mode) 이외에도 기하형상을 선택하거나 임의 면을 생성하는 방식(Cutting Mode)이 추가되었고, 이 정보를 그룹으로 등록/관리하여 동일한 위 치의 유량을 손쉽게 반복적으로 확인할 수 있습니다.

2.2 flow quantity (면선택 유량) (2/3)

- <mark>기존에 유량 측정은 유출이 발생하는 위치의 절점을 직접 선택 혹은 입력하고</mark> 한번 계산 후, 동일 위치의 결과를 확인 하기 위해서는 처음부터 작업을 반복해야 했습니다.
- 기존의 절점선택 방식(Node Mode) 이외에도 기하형상을 선택하거나 임의 면을 생성하는 방식(Cutting Mode)이 추가되었고, 이 정보를 그룹으로 등록/관리하여 동일한 위 치의 유량을 손쉽게 반복적으로 확인할 수 있습니다.

▪ 결과분석 > 특수 후처리 > 침투결과 > 유량

- 분할 면 > 평면 선택

- 요소망을 생성할 때 사용한 기하형상에서 원하는 면을 선택하여 유량을 계산

2.2 flow quantity (면선택 유량) (3/3)

- <mark>기존에 유량 측정은 유출이 발생하는 위치의 절점을 직접 선택 혹은 입력하고</mark> 한번 계산 후, 동일 위치의 결과를 확인 하기 위해서는 처음부터 작업을 반복해야 했습니다.
- 기존의 절점선택 방식(Node Mode) 이외에도 기하형상을 선택하거나 임의 면을 생성하는 방식(Cutting Mode)이 추가되었고, 이 정보를 그룹으로 등록/관리하여 동일한 위 치의 유량을 손쉽게 반복적으로 확인할 수 있습니다.

2.3 침투해석 시간에 대한 결과그래프

• 시간에 따른 침투 결과를 그래프로 확인하는 기능이 추가되었습니다.

절검결과(Nodal Seepage)와 요소결과(Solid, Shell, Plane Strain, Axisymmetric, Plane Stress/Geogrid(2D), Beam/Embedded Beam, Truss/Em Truss/Geogrid(1D))
 로 구분되어 있습니다.

∎ 해서 ╮ 이려 ╮ 이려견과 타새 ㆍ 치트전저견과		
- 에ㄱ╯이ㄱ╯이ㄱᆯᅿᆸㄱㆍᆸㅜᆯᆷᆯᅿ	이력결과 탐색 탄색 타입 트러스/임베디드 트러스/지오그리드(1 • 결과 타입 - 결과 타입	■ 침투결과 이력탐색은 단일 해석케이스의 비정상류 해석 / 응 려치트와저여계해서 결과에서 화의할 수 있습니다. 시골다계
이력결과 탐색 ★ 탐색 타입 침투 절점결과 ▼ 성분 Total Head ▼	● 변형률 ● 침투 ● 응력 ● 부재력 성분 Hydraulic Grad - X 절점 절점 1	직접수현 전전계에 적 철죄에서 확진할 수 있습니다. 이용전계 에서는 확인 불가 합니다. ■해석케이스 > 결과제어 > 이력 에서 등록할 수 있습니다.
함수데이터 Total Head 이를 Pore Pressure Head Pore Pressure Flow Rate	함수 데이터 Hydraulic Grad - X 이를 Flow Velocity - X Permeability - A Volume Water Content	결과 제어 조 출력 타입 결과 옵션 선택되지 않은 탐색 종류 선택된 탐색 종류 별점
이력 스텝 ● 모든 출력스텝 ● 출력 빈도수 ● 스텝 ● 시간 ● 시간	이력 스텝 ● 모든 출력스텝 ● 출력 빈도수 ● 스텝 ● 시간 0	같점유량 겉점유량 겉점유량 같점유량5
이름 종류 하중성분 추가 수정 삭제	이름 종류 하중성분 추가 수정 삭제	
문기 문기	문기	확인 취소
[침투 절점결과]	[침투 요소결과]	[해석케이스 > 결과제어 > 이력]

2.4 결과 Vector (절단면 선에 컨투어와 벡터표현)

- 절단면 벡터 : 절단선/면에서 벡터 결과를 출력합니다. 절단선/면을 정의하는 방식은 'Clipping Plane '과 동일합니다.
- 절단면 컨투어: 절단선/면의 컨투어 결과를 벡터와 동시에 표현합니다.
- 전체 모델 벡터 : 절단선/면의 벡터와 전체 모델의 벡터 결과를 동시에 표현합니다.
- 절단면 벡터 투영 : 벡터를 절단면 수직 방향으로 투영하여 표현합니다.

MODS

2. Post Processing

2.5 결과변환 - 해석결과를 정적하중으로 변환 (MODS)

- 해석이 완료된 결과로부터 'Nodal Force', 'Nodal Moment', 'Nodal Translational Displacement', 'Nodal Rotational Displacement' 타입을 하중으로 생성하여, 다른 해석케이스에 하중타입으로 해석 가능합니다.
- 단, 해석이 완료된 케이스/스텝에서 각 결과타입에 해당하는 결과를 출력한 경우에만 하중으로 변환 가능합니다.

2. Post Processing

2.6 결과변환 - 해석결과를 침투 경계조건으로 변환 (MODS)

• 해석이 완료된 결과로부터 'Nodal Seepage' 타입을 경계조건으로 생성하여, 침투경계조건을 활용할 수 있는 다른 해석케이스에 경계조건타입으로 사용이 가능합니다..

• 단, 해석이 완료된 케이스/스텝에서 각 결과타입에 해당하는 결과를 출력한 경우에만 하중으로 변환 가능합니다.

2.7 동해석 하중테이블 불러오기/내보내기 (MODS)

- 동적절점하중(Dynamic Nodal Load) 정보를 엑셀(excel)파일 형태로 불러오거나 내보내는 기능입니다.
- 하중 테이블 샘플파일은 프로그램 설치 후 C:\Program Files\MIDAS\GTS NX\Sample 폴더에서 'LoadTable Sample.xlsx' 파일로 확인 가능합니다.

MODS

3. Analysis

Ø

- 3.1 CWFS (Cohesion Weakening and Frictional Strengthening) (1/2) (MODS)
- CWFS모델은 Mohr-Coulomb항복함수를 활용하여 경화/연화 거동이 가능하게 된 모델입니다.
- 일반적으로 대심도에 건설되는 암반구조물의 경우 높은 현지응력과 공동의 굴착에 따른 유도응력으로 인하여 공동 경계면에서 스폴링이나 슬래빙과 같은 취성파괴과 발생 할 수 있습니다.
- Hoek-Brown, Mohr-Coulomb 파괴기준과 같은 파괴기준을 적용하는경우, 취성파괴현상과 파괴심도 등을 예측할 수 없는 것으로 나타나 취성파괴를 예측하기 위한 여러 모 델이 제안되었습니다. 그 중 CWFS 모델이 취성파괴를 적절히 모사하는 것으로 알려져 있습니다.

MODS

3. Analysis

3.1 CWFS (Cohesion Weakening and Frictional Strengthening) (2/2) (MODS)

- CWFS모델은 Mohr-Coulomb항복함수를 활용하여 경화/연화 거동이 가능하게 된 모델입니다.
- 일반적으로 대심도에 건설되는 암반구조물의 경우 높은 현지응력과 공동의 굴착에 따른 유도응력으로 인하여 공동 경계면에서 스폴링이나 슬래빙과 같은 취성파괴과 발생 할 수 있습니다.
- Hoek-Brown, Mohr-Coulomb 파괴기준과 같은 파괴기준을 적용하는경우, 취성파괴현상과 파괴심도 등을 예측할 수 없는 것으로 나타나 취성파괴를 예측하기 위한 여러 모 델이 제안되었습니다. 그 중 CWFS 모델이 취성파괴를 적절히 모사하는 것으로 알려져 있습니다.

[CWFS모델에서의 점착락과 마찰각의 발현 모식도(after Hajiabdlmajid, 2001)]

3. Analysis

3.2 D-min (일본 중앙전력연구소 제안모델) (1/2) (MODS)

- 본 모델은 일반적으로 암반(경암, 연암 등)에 대해서 적용되는 것으로 일본 전력중앙연구소, 하야시, 히비노에 의해서 제안된 구간 별 선형 모델입니다.
- 구간 별 선형 모델이란 각 시공단계 별로 강성이 다르지만, 하나의 시공단계 내에서는 강성이 고정 값이 되도록 정식화된 모델을 의미합니다.
- GTS NX에서는 D-min의 두가지 산정방식을 제공합니다. JR방식은 철도와 관련한 해석에 많이 사용되고, 전력중앙연구소방식은 댐, 도로교 등 해석에 많이 사용됩니다.

MODS

3. Analysis

3.2 D-min (일본 중앙전력연구소 제안모델) (2/2) (MODS)

■ 특성/좌표계/함수 > 재료 > 등방성 > D-min(MODS)

일반 다공성 재질 비선형			
초기탄성계수 (D0)		300	kN/m²
한계탄성계수 (Df)		600	kN/m²
비선형재료계수 (m)		1	
초기프아송비 (u0)		0.3	
한계프아송비 (uf)		0.3	
비선형 재료 계수 (n)		1	
전단강도 <mark>(</mark> φR)		3000	kN/m²
인장강도 (ot)		3000	kN/m²
모아원 계수 (a)		1	
완충지수 <mark>(k</mark>)		1	
◎ JR방식	◎ 전력경	중앙연구소방식 	
🔲 마찰각 <mark>(</mark> Φ)		36	[deg]

[표. 비선형 파라미터]

파라미터	설명	관계식
D ₀	초기탄성계수(Ei)	
D _f	한계탄성계수(E _{cr})	$E = R^m E_i$
m	비선형재료계수	$\nu = R^n(v_i - v_{cr}) + v_{cr}$
u ₀	초기포와송비(ʋɨ)	$E = R^m (E_i - E_{cr}) + E_{cr}$
Uf	한계포와송비(ʋ‹r)	$v = R^n (v_i - v_{cr}) + v_{cr}$
n	비선형 재료 계수	
φ _R	전단강도(ᠠᠷ)	
σ _t	인장강도(ᡋᡕ)	$\begin{pmatrix} \tau \\ -1 \end{pmatrix}$
а	모아원 계수	$\left(\frac{\tau_R}{\tau_R}\right) = 1 - \frac{1}{\sigma_t}$
к	완충지수	
φ	마찰각	삼축시험으로 구하는 내부마찰각

[표. 초기 탄성계수에 따른 파라미터 추천값] (일본도로공단 1986)

초기탄성계수(<i>E, kgf/cm</i> ²)	완충 지수(к)	모아원 계수(a)
$100 \le E_i \le 1,000$	2.0	1.0
$1,000 \le E_i \le 10,000$	4.0	2.0
$10,000 \le E_i \le 100,000$	6.0	3.0
100,000 ≤ E _i	10.0	4.0

