

MODS 2020 (R4) Release Note. 2019년 12월 Integrated Design System for Building and General Structures

http://www.midasuser.com Copyright © since 1989 MIDAS Information Technology Co., Ltd. All rights reserved.

Product Version

MODS 2020 2019. 12. 19

기본/서비스 모듈

Release Note

Part I. midas Gen 2020(V.890 R1) 주요 개정내용

۲	[Seismic Evaluation] 기존 시설물(건축물) 내진성능 평가요령(시설안전공단,2019) 지원	06
۲	[Seismic Evaluation/KISTEC2019] (1단계 상세평가) RC 기둥, 벽체 휨강도 산정 옵션	07
۲	[Seismic Evaluation/KISTEC2019] (예비평가) 조적채움벽 효과 고려	08
۲	[Seismic Evaluation/KISTEC2019] (예비평가) 비정형계수 고려	09
۲	[Seismic Evaluation/KISTEC2019] (1단계 상세평가) 보정계수 고려	10
۲	[Seismic Evaluation/KISTEC2019] (2단계 상세평가) 보정계수 및 하중계수 고려	11
۲	[Seismic Evaluation/KISTEC2019] (1단계 상세평가, 2단계 상세평가) 검토 계산서 출력	12
۲	[Seismic Evaluation/KISTEC2019] (1단계 상세평가, 2단계 상세평가) 채움벽에 인접한 RC 기둥 검토 개선	14
۲	[Seismic Evaluation/KISTEC2019] (1단계 상세평가) 전단지배 RC 기둥 휨강도 산정 개선	15
۲	[Pushover Analysis] 스텝별 반력 결과 테이블 추가	16
۲	[Inelastic Time History Analysis] 선택한 요소에 대한 힌지 결과 및 최대/최소 결과 선택적 출력 지원	17
۲	[Inelastic Time History Analysis] Solver 성능 향상(해석시간 단축)	19
۲	[Inelastic Time History Analysis] Fiber Beam, Wall 비탄성 힌지 결과 Summary Table 추가	20
۲	[KDS 41] 하중조합 지원	21
۲	원형강관/파이프 단면의 강도비 산정 방식 옵션 지원	22

Release Note

Part II. midas Design+ (V.450 R1) 주요 개정내용

۲	[KDS 41] 기준 검토 지원	24
۲	[KDS 41] 필로티 및 1층이 약층인 골조 내진 상세 검토 지원	25
۲	원형강관/파이프 단면의 강도비 산정 방식 옵션 지원	28
۲	요약 결과 출력 및 Report 옵션 지원	29

Part 표. midas ADS (V.265 R1) 주요 개정내용

◈ [KDS 41] 하중조합 지원 ------

Part IV. 기타 개선 및 버그 수정

33

Gen v.890

[midas Gen V890 R1] [Seismic Evaluation] 기존 시설물(건축물) 내진성능 평가요령(시설안전공단,2019) 지원

- 기존 시설물(건축물) 내진성능 평가요령(시설안전공단, 2019) 지원
- RC 기둥, 벽체 휨강도 산정 옵션 및 예비평가 시 조적채움벽 효과 고려 옵션 추가

Seismic Evaluation > Evaluation Method : KISTEC2019

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (1단계 상세평가) RC 기둥, 벽체 휨강도 산정 옵션

- RC 기둥, 벽체 휨강도 산정 시, PM Curve 상의 동일 축력 산정 또는 동일 편심 산정 중 선택 적용 (Global, 부재별 설정 가능)
- MOE2019(교육부,2019) 선형해석평가(지진하중 검토), m계수법 검토 시에도 적용 가능

Seismic Evaluation > Evaluation Method : KISTEC2019, MOE2019 Seismic Evaluation > Common Parameter > P-M Curve Calulation Method

Global 설정

 P-M Curve Checking Ratio Method (KISTEC2019)

P-M Curve Checking Ratio Method	×
1st Eval, Column:	○ Keep M/P constant ○ Keep M/P constant
	OK Cancel

P-M Curve Checking Ratio Method (MOE2019)

P-M Curve Checking Ratio Method	×
⊂Linear Evaluation Column : ⊚ Keep P constant Wall : ⊚ Keep P constant	 Keep M/P constant Keep M/P constant
m-Factor Column :	⊘ Keep M/P constant ⊘ Keep M/P constant
	OK Cancel

부재별 설정
Common
P-M Curve Checking Ratio M 👻
Option
💿 Add / Replace 🛛 🔿 Delete
Element Type
💿 RC Column 🛛 🔘 Wall
P-M Curve Checking Ratio Method—
Keep P constant
© Keep M/P constant

- RC 기둥 및 벽체의 위치에 따라 지진하중 작용 시, 엔지니어 판단에 따라 축력 변동이 거의 없는 기둥은 동일 축력 휨강도로 산정하고, 축력 변동이 큰 기둥은 동일 편심 휨강도로 산정하도록 설정해서 검토할 수 있습니다.

* MOE2019 선형해석평가에서는 지진하중 검토 시에 만 적용되며, 중력하중 검토 시에는 옵션 설정과 무관 하게 동일 편심 휨강도로 산정합니다.

Vm

 (kN/m^2)

35.00

35.00

35.00

DCR

(kN)

LS

Performance

Performance

LS

midas Gen | Enhancement

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (예비평가) 조적채움벽 효과 고려

- 조적채움벽 단면정보 출력 및 지진하중에 대한 저항능력 산정
- 구조물의 성능수준 판정 시 조적 채움벽의 저항능력 고려

Seismic Evaluation > Evaluation Method : KISTEC2019 Seismic Evaluation > Evaluation Type(Pre. Eval.) > Calculation Parameters > Masonry Infill Wall Information Seismic Evaluation > Evaluation Type(Pre. Eval.) > Masonry Infill Wall Capacity

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (예비평가) 비정형계수 고려

- 구조물의 성능수준 판정 시 비정형계수(λs) 고려한 DCR 값 계산
- 항목수에 따른 비정형계수(λs) 자동계산 지원

Seismic Evaluation > Evaluation Type(Pre. Eval.) > Calculation Parameters > Set Calc. Parameters

■ 예비평가를 위한 계산 정보 설정

Set Calculation Parameters		Define λs
Method : KISTEC2019 -		λs = 0.81 (=0,9^n) n = 2
Demand Calculation Seismic Load Parameters Seismic Zone 1 Fa 1.38000 EPA (S) 0.22 Fv 1.38000 Site Class S2 Sds 0.50600 g Importance (Ie) 1.2 Sd1 0.20240 g Effective Weight :		대기서, n은 마래의 6가지 사항 중 해당하는 항목의 수를 나타낸다. 단, 5번 항목에 해당할 경우 다른 항목의 수의 합에 2를 대한다. 1. L, T, U, H형 평면에서 돌출부의 면적이 전체평면면적의 20%를 초과할 경우, 단, 돌출부는 튀머나온 길이가 폭 의 0.5배 이상인 경우만 고려. 2. 평면치수의 장변 대 단변의 비가 8을 초과하는 경우. 3. 출고가 가장 낮은 총의 총고가 가장 높은 총의 총고의 70%이하일 경우, 단, 최상총은 가장 총고가 낮은 총에 해 당하지 않음. 4. 가장 면적이 작은 총의 면적이 가장 큰 총의 면적의 70%이하일 경우, 단, 최상총은 가장 면적이 작은 총에 해당 하지 않음. 5. 상총부 수직부재의 단면적 합이 하층부 수직부재의 단면적 합에 비해 30%를 초과하는 경우(필로티 등) 또는 기동사이의 조직벽체가 필실하게 채워진 경우, 조직벽체도 수직부재로 본다. 6. 법취의 강성 중심이 평면의 중심에서 벽체의 수직방향으로 전체 평면길이의 1/6을 초과하는 경우, 단, 기둥만
Capacity Calculation Assign Material Strength Calculation Methods D _μ : 2 λs : 1 OK Cancel	- 예비평 사용자7	이저 이전 이상 사실 이 이상 사실 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이

- 구조물 성능수준 판정 시, λs를 고려하여 DCR 값을 계산한 결과를 출력합니다.

■ 구조물 성능수준 판정결과

			Effective		Demand				>	(-Direction		Y-Direction						
Story	(m)	Sds	Weight (kN)	Y	(kN)	Dμ	λs	Cf (kN)	Cs (kN)	Capacity (kN)	DCR	Performance	Cf (kN)	Cs (kN)	Capacity (kN)	DCR	Performance	D
Roof	9.90	0.506000	6008.05	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	
3F	6.60	0.506000	6774.15	0.47	4651.21	2.00	1.00	6261.15	3116.00	12522.30	0.37	IO	9192.85	6515.19	18385.70	0.25	10	
2F	3.30	0.506000	6774.15	0.82	8147.41	2.00	1.00	6261.15	3116.00	12522.30	0.65	LS	9192.85	6515.19	18385.70	0.44	ю	
1F	0.00	-	-	1.00	9895.52	2.00	1.00	6605.19	3116.00	13210.40	0.75	LS	9537.36	6571.80	19074.70	0.52	LS	
								STRUC	TURE PERFO	ORMANCE								
												Performance					Performance	
												LS					LS	

$$CR_{i} = \frac{S_{XS} \cdot W \cdot \gamma_{i}}{C_{i} \cdot \lambda_{s}}$$
(3.3.3)

니청거거거키

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (1단계 상세평가) 보정계수 고려

• 힘지배거동을 하는 부재의 부재력 산정 시 보정계수(X) 고려

Seismic Evaluation > Evaluation Type(1st Eval.) > Load > Pseudo Seismic Force Seismic Evaluation > Evaluation Type(1st Eval.) > Load > Response Spectrum > Modification Factor Control

1884 EV		
Add/Modify Pseudo Seismic Force	4.2.7 하중조합 및 다축가진효과	
Load Case Name : EX 🚽 📖	(4) 힘지배거동을 하는 부재의 부재력(Q _{UF})은 식 (4.2.12) 또는 식 (4.2.13)에	의해 산정한다.
Method : KISTEC2019		
Description :	XQE	
Seismic Load Parameters	$Q_{UF} = Q_G \pm \frac{2}{CJ}$	(4.2.12)
Design Spectral Response Acceleration	$Q_{E} = Q_{E} + \chi Q_{E}$	(1 2 1 3)
Seismic Zone 1 Fa 1.38000	$Q_{UF} = Q_G \pm \frac{1}{C}$	(4.2.15)
EPA(S) 0.22 - Fv 1.38000	여기서,	
Site Class S2 - Sds 0,50600 g	Q_{UF} : 중력하중과 지진하중의 조합에 의한 부재력	
Period Coef, (Cu) 1,49760 Sd1 0,20240 g	C : 표 4.2.1에서 정의된 수정계수	
Otwartunal Davasa atura	J : 하중전달 감소계수	
X-Dir, Y-Dir,	χ : 성능수준에 따른 보정계수, J의 값으로 DCR의 최소치를	를 택한 경우 1.0으로 하고
Approximate Period : 0 0 0	그렇지 않을 경우 붕괴방지의 성능수준에 대해서는 1.0), 인명안전 혹은 거주가능
C: 1.00 J: 1.00 X: 1.00	에 대해서는 1.3을 사용	
•••••••		

■ 보정계수를 고려한 부재력(QUF) 산정 : RC Column Performance 출력 예

		n I			Laural	Contine					Demand(QUD) Demand(QUF)								
	×		Module	Story	(m)	Name	Member	Load	Part	Pu (kN)	Muy (kN∙m)	Muz (kN·m)	Vuy (kN)	Vuz (kN)	Pu (kN)	Muy (kN∙m)	Muz (kN·m)	Vuy (kN)	Vuz (kN)
			Scale Up	ofmF	actor for DC	R Calculat	tion of De	formation-	Controlled	Action = 1									
			Base	3F	6.60	2~3C1	369	eLCB2	[[115]	-33.04	8.49	20.73	21.17	4.29	16.95	3.75	0.85	4.35	1.61
			Base	3F	6.60	2~3C1	369	eLCB2	J[171]	-53.55	8.73	96.28	21.17	4.29	-3.55	5.64	59.19	4.35	1.61
			Base	3F	6.60	1~3C3	370	eLCB2	[[116]	75.73	8.52	84.63	60.64	5.37	79.48	6.55	42.87	30.73	3.86
X			Base	3F	6.60	1~3C3	370	eLCB2	J[172]	55.22	1.36	111.80	60.64	5.37	58.97	-0.92	55.12	30.73	3.86
1			Base	3F	6.60	3C2	377	eLCB2	[123]	210.24	69.71	68.40	45.72	48.29	210.69	65.28	34.31	22.93	45.38
1			Base	3F	6.60	3C2	377	eLCB2	J[179]	196.57	-70.56	81.87	45.72	48.29	197.01	-74.93	40.80	22.93	45.38
1			Base	3F	6.60	3C2	383	eLCB2	[129]	209.62	68.57	68.25	45.65	47.54	209.90	64.48	34.13	22.83	44.87
									-										

선형동적절차

MIDAS

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (2단계 상세평가) 보정계수 및 하중계수 고려

• 힘지배거동을 하는 부재의 부재력 산정 시 보정계수(χ) 및 하중계수(γ) 고려

Seismic Evaluation > Evaluation Type(2nd Eval.) > Misc. > Parameter > Modify xy Factor for Force Controlled Action Members

▪ 보정계수 및 하중계수 설정
χγ Factor for 2nd Eval.
Modify χ_{\aleph} Factor for RC \bullet
Options
💿 Add/Replace 🛛 💿 Delete
Modification Factor(χ)1.3Load Factor (χ)1 $\chi\chi$ 1.3
The $\chi\chi$ value does not exceed 1,50,
Apply Close

* 부재별 보정계수 및 하중계수를 설정하지 않은 경우,
Evaluation Method에서 설정한 성능 수준에 따라 XY 값이
적용됩니다. (IO, LS : 1.3, CP : 1.0)
* Pushover 하중 설정 시 초기하중(Initial Load)을 고려하

는 것으로 설정해야 QG 값이 출력됩니다.

	4.3.6 부재별 허용기준 (2) 힘지배거동의 만족여부는 식 (4.3.2)에 따라 판정한다.
	$Q_{CN} \ge \mathfrak{N}(Q_{UF} - Q_G) + Q_G \tag{4.3.2}$
	여기서, Q_{UF} : 중력하중과 지진하중의 조합에 의한 성능점 또는 목표변위에서의 힘지배거동의 부재력
	Q_G : 중력하중조합에 의한 힘지배거동의 부재력 Q_{CN} : 공칭재료강도를 사용하여 산정한 부재의 공칭강도
	χ : 성능수준에 따른 보정계수, 붕괴방지의 성능수준에 대해서는 1.0, 인명안전 혹은 거주가능에 대해서는 1.3을 사용
/	γ : 하중계수. 수직부재, 전이보 등와 같이 파괴시 여러 경간 혹은 층의 붕괴를 유발 하는 부재일 경우 1.3, 단일 경간의 붕괴를 유발하는 부재이거나 타 부재의 붕괴 를 유발하지 않는 부재일 경우 1.0을 사용
	단, χ와 γ의 곱은 1.5를 초과할 필요없다. 또한 전단벽의 전단력을 제외하고, 기대강도가 적용된 구 조물 소성해석에 의한 부재력과 중력하중에 의한 부재력의 조합을 통해 산정된 최대 부재력이 부재의 공칭강도보다 낮을 경우 보정계수 및 하중계수를 적용한 요구량의 할증은 적용하지 않아도 된다.

■ 보정계수 및 하중계수를 고려한 부재력(QUF) 산정 : RC Column Performance 출력 예

Story	Level (m)	Section Name	Member	Load	Step	Part	Controlled Action	Transverse Reinf.	Axial Force Ratio	Shear Force Ratio	Хү	QUF (KN)	QG (kN)	Xy*(QUF-QG)+QG (kN)	QCN (KN)	QUF.app/Q CN	Performance
2F	3.30	2~3C1	233	PO-X	40(PP)	[57]	Group1	С	0.000	0.005	1.30	84.656	2.097	109.423	1520.100	0.072	ю
2F	3.30	2~3C1	233	PO-X	40(PP)	J[115]	Group1	С	0.000	0.005	1.30	103.296	3.832	133.135	1520.100	0.088	ю
2F	3.30	1~3C3	234	PO-X	40(PP)	[60]	Group1	С	0.038	0.003	1.30	-192.334	0.022	-250.041	-5376.203	0.047	10
2F	3.30	1~3C3	234	PO-X	40(PP)	J[116]	Group1	С	0.034	0.003	1.30	-173.693	-0.025	-225.794	-5376.203	0.042	10
2F	3.30	1~3C3	237	PO-X	40(PP)	[63]	Group1	С	0.012	0.004	1.30	-62.608	0.015	-81.395	-5376.203	0.015	10
2F	3.30	1~3C3	237	PO-X	40(PP)	J[119]	Group1	С	0.021	0.004	1.30	-105.735	0.015	-137.459	-5376.203	0.026	10
2F	3.30	1~3C3	240	PO-X	40(PP)	[66]	Group1	С	0.022	0.003	1.30	-113.001	-173.748	-94.777	-5376.203	0.018	10
\Dx	λ Dy λ Dz	: ƙRx ƙ	,Ry (R:	z /									1				

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (1단계 상세평가, 2단계 상세평가) 검토 계산서 출력

- RC 부재의 상세 계산 과정을 텍스트 계산서로 출력
- MOE2019(교육부,2019) m계수법, 비선형정적해석평가 시에도 RC 부재 계산서 출력 지원

Seismic Evaluation > Evaluation Type(1st Eval.) > Result > Performance > RC Performance

1단계 상세평가 RC Performance

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (1단계 상세평가, 2단계 상세평가) 검토 계산서 출력(계속)

- RC 부재의 상세 계산 과정을 텍스트 계산서로 출력
- MOE2019(교육부,2019) m계수법, 비선형정적해석평가 시에도 RC 부재 계산서 출력 지원

Seismic Evaluation > Evaluation Type(2nd Eval.) > Result > Performance > RC Performance

2단계 상세평가 RC Performance

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (1단계 상세평가, 2단계 상세평가) 채움벽에 인접한 RC 기둥 검토 개선

- 채움벽에 인접한 RC 기둥의 축 성분 검토 시 변형지배로 고려
- MOE2019(교육부,2019), MOE2018(교육부,2018) m계수법, 비선형정적해석평가 시에도 적용

Seismic Evaluation > Evaluation Type(1st Eval.) > Result Tables > RC Performance Seismic Evaluation > Evaluation Type(2nd Eval.) > Hinge Properties > Update Pushover Hinge Properties

- 내진성능평가 시 RC 기둥의 축성분은 힘지배로 검토하고 있었으나, 요령집에 언급된 '축압축 및 축인장 거동'을 고려하여 변형지배로 검토할 수 있 도록, 축성분 검토 시 채움벽에 인접한 RC 기둥의 m계수와 변수를 적용하도록 개선하였습니다.

- 그에 따라 휨성분은 일반 RC 기둥의 m계수와 변수를 적용하게 되었습니다.

- 축성분은 Local 축 방향과 무관하므로, Modify RC Column(M) Type 옵션은 기 둥의 Local 축 방향과 무관하게 부재에 적용됩니다. (885 버전에서 한쪽 방향이라도 RC Column(M)으로 설정되어 있었다면, 890 버전에서 파일 오픈 시 RC Column(M)으로 설정됩니다.) 6.1.4.1 선형절차

(7)채움벽에 인접한 철근콘크리트 기둥의 m 계수는 표 6.1.4에 따른다.

표 6.1.4 조적채움벽에 인접한 철근콘크리트기둥의 m 계수¹⁾

	거준	1차	부재	2차-	부재
조건	가능	인명 안전	붕괴 방지	인명 안전	붕괴 방지
 기둥이 압축부재로 작용할 때²⁾ 					
전체 길이에 걸쳐 모든 단면이 <u>횡보강근에 의해 구속된 경</u> 우 ³⁾	1	3	4	4	5
그 밖의 경우	1	1	1	1	1
(2) 기둥이 인장부재로 작용할 때 ²					
주근 이음부가 충분히 구속된 경우와 이음부 가 없는 경우	3	4	5	5	6
그 밖의 경우	1	2	2	3	4

6.1.4.2 비선형정적절차

(9) 조적채움벽에 인접한 기둥의 축압축 및 축인장 거동에 대한 모델링 파라메터는 표 6.1.6과 같이 산정한다.

표 6.1.6 조적채움벽에 인접한 철근콘크리트기둥의 모델링 주요변수 및 허용기준

	모델링 주	요변수』		허용기준 (전체 변형률)
조건	전체 변형	흔	잔류 강도비	거주	인명	붕괴
	d	е	с	가중	안선	방지
(1) 기둥이 압축부재로 직	용할 때 ²⁾					
전체 길이에 걸쳐 모든						
단면이 횡보강근에 의	0.02	0.04	0.4	0.003	0.015	0.02
해 구속된 경우 ³⁾						
그 밖의 경우	0.003	0.01	0.2	0.002	0.002	0.003
(2) 기둥이 인장부재로 직	·용할 때 ²⁾					
주근 이음부가 충문히						:
구속된 경우와 이음부	0.05	0.05	0	0.01	0.03	0.04
가 없는 경우						
그 밖의 경우	각주 4)	0.03	0.2	각주 4)		

[midas Gen V890 R1] [Seismic Evaluation/KISTEC2019] (1단계 상세평가) 전단지배 RC 기둥 휨강도 산정 개선

- 전단지배로 판단된 RC 기둥의 휨강도 산정 시, PM 상관도에서 계산한 휨강도만 고려하도록 개선
- KISTEC2013(시설안전공단,2013) 1단계 상세평가 및 MOE2019(교육부,2019), MOE2018(교육부,2018) m계수법 검토 시에도 적용

Seismic Evaluation > Evaluation Type(1st Eval.) > Result Tables > RC Performance

- RC 기둥이 전단지배로 판단되는 경우, 기둥 휨강도 산정 시 PM 상관도에서 계산한 Me와 전단강도에 의해 계산한 Vn*L/2 중 작은 값을 최종적인 Me로 계산하고 있었습니다.

KISTEC2013 개발 시 실무자 의견을 반영한 사항으로, Mi=Mj=M으로 보면 전단지배 판단 시의 수식 Vn>2M/L으로 강전단약휨의 의미를 고려하여 검토한 것이었습니다.

매우 보수적인 평가를 하고 있었던 것으로, 사용자 피드백 검토 과정에서 전문가 위원의 자문을 통해 PM 상관도에서 계산한 휨강도로만 휨성분 DCR을 검토해도 되는 것으로 확인하고 개선하게 되었습니다.

▪ 전단지배 RC 기둥 휨강도 산정 및 DCR 결과 예

수정전

																					and the second second	A REAL PROPERTY AND INC.	And the second second
Castian					Deman	d(QUD)				Capi	acity						m-Fa	octor				DCR	
Name	Member	Load	Part	L(m)	Muy	Muz	Vny	Vnz	Mey	Mez	Mey,Vn	Mez,Vn	Mey, final	Mez,final		У			z			Flexural	
Name					(kN·m)	(kN·m)	(kN)	(kN)	(kN·m)	(kN·m)	(kN·m)	(kN·m)	(kN•m)	(kN·m)	10	LS	CP	IO	LS	CP	10	LS	CP
C1	10	eLCB1	I[27]	1.78	285.1	21.13	563.66	476.52	1122.34	511.39	423.53	500.98	423.53	500.98	1.00	1.00	1.00	1.00	1.00	1.00	0.56	0.56	0.56
C1	10	eLCB1	J[44]	1.78	429.33	77.71	382.21	473.45	1113.72	506.97	420.80	339.71	420.80	339.71	1.00	1.00	1.00	1.00	1.00	1.00	1.14	1.14	1.14

수정후

Castion					Demand	l(QUD)				Capa	ncity						m-Fa	ctor				DCR	
Name	Member	Load	Part	L(m)	Muy	Muz	Vny	Vnz	Mey	Mez	Mey,Vn	Mez,Vn	Mey, final	Mez,final		у			z			Flexural	
					(kN·m)	(kN·m)	(kN)	(kN)	(kN•m)	(kN·m)	(kN·m)	(kN•m)	(kN·m)	(kN·m)	IO	LS	CP	IO	LS	СР	IO	LS	СР
C1	10	eLCB1	I[27]	1.78	285.1	21.13	563.66	476.52	1122.34	511.39	-	-	1122.34	511.39	1.00	1.00	1.00	1.00	1.00	1.00	0.14	0.14	0.14
C1	10	eLCB1	J[44]	1.78	429.33	77.71	382.21	473.45	1113.72	506.97	-	-	1113.72	506.97	1.00	1.00	1.00	1.00	1.00	1.00	0.30	0.30	0.30

[midas Gen V890 R1] [Pushover Analysis] 스텝별 반력 결과 테이블 추가

• Pushover 스텝별 반력 결과를 테이블 형태로 확인할 수 있도록 지원

Results > Results Tables > Reaction

Reaction Results Active Records

Records Activation Dialog	<u> </u>		- Pusł	nover 반력	결과를 그리	ㅐ픽 뷰에서	만 확인힐	수 있었	는데,
Node or Element Loadcase/Combination Stage/Step			테이블	블로도 반력	값을 확인할	할 수 있도록	릒 기능을	추가하였	습니다.
All None Inverse Prev DL(ST) po_0020 Node 1 2 5to32 45to98 102to154 1 EX(ST) po_0022		*	Reac	tion Table					
Select Type EY(ST) po_0023	Node	Load	Step	FX	FY (M)	FZ	MX (kh m)	MY (Id) m)	MZ (th) m)
Element Type Add RX(RS)	10	DO V(all)	DO 0025	(NN)	1.083701	(NN) 6 502724	0.000000	0.000000	0.000000
TRUSS RY(RS)	20	PO-X(all) PO-X(all)	po_0025	-152 327389	-0.667129	-17 344508	0.000000	0.000000	0.000000
BEAM Delete RX_PO(RS)	21	PO-X(all)	po_0025	-188.008300	-1.119317	6.509963	0.000000	0.000000	0.000000
PLANE STRESS	22	PO-X(all)	po_0025	-152.590893	-0.720503	-3.951289	0.000000	0.000000	0.000000
WALL po_0029	23	PO-X(all)	po_0025	-188.020424	-1.181334	7.066445	0.000000	0.000000	0.000000
Wall Opening Thersect Process Process	24	PO-X(all)	po_0025	-152.325419	-0.728509	-19.031382	0.000000	0.000000	0.000000
	25	PO-X(all)	po_0025	-188.031196	-1.215565	7.060694	0.000000	0.000000	0.000000
	26	PO-X(all)	po_0025	-152.619862	-0.780895	-4.335540	0.000000	0.000000	0.000000
	27	PO-X(all)	po_0025	-187.839748	-1.279637	7.565182	0.000000	0.000000	0.000000
OK	28	PO-X(all)	po_0025	-152.108339	-0.805227	-20.339656	0.000000	0.000000	0.000000
	29	PO-X(all)	po_0025	-189.531379	-1.312226	6.926836	0.000000	0.000000	0.000000
	30	PO-X(all)	po_0025	-154.562045	-1.043575	-12.539502	0.000000	0.000000	0.000000
	31	PO-X(all)	po_0025	-315.053840	-1.233745	136.404458	0.000000	0.000000	0.000000
Reaction Result	32	PO-X(all)	po_0025	-304.482623	0.559516	48.608073	0.000000	0.000000	0.000000
Reacti Defor Forces Stress Strains	45	PO-X(all)	po_0025	-02.123240	-0.07/040	51.025945	0.000000	0.000000	0.000000
Reaction Forces/Moments	40	PO-X(all)	p0_0025	-02.112550	-1.007974	-0.400444	0.000000	0.000000	0.000000
	48	PO-X(all)	no 0025	-82 457676	-10 196519	9 910894	0.000000	0.000000	0.000000
	40	PO-X(all)	po_0025	-82 752439	-1 458565	-2 578431	0.000000	0.000000	0.000000
90 ⁻⁷	50	PO-X(all)	po_0025	-82.441271	-11.236684	10.930814	0.000000	0.000000	0.000000
Step PO Step.25	51	PO-X(all)	po 0025	-82.755139	-1.600361	-2.727010	0.000000	0.000000	0.000000
Components	52	PO-X(all)	po 0025	-82.437472	-12.288716	12.063725	0.000000	0.000000	0.000000
	53	PO-X(all)	po_0025	-82.763926	-1.742892	-2.896312	0.000000	0.000000	0.000000
ELocal (if defined) 영상 동일	54	PO-X(all)	po_0025	-82.394483	-13.323814	13.102317	0.000000	0.000000	0.000000
Type of Display	55	PO-X(all)	po_0025	-82 927325	-1.762994	3 608280	0.000000	0.000000	0.000000
Values C Legend C '3.3	56	PO-X(all)	po_0025	-83.202109	-16.318422	-4.354302	0.000000	0.000000	0.000000
Arrow Scale Factor: 1,000000				SUMM	ATION OF REACTION	ON FORCES PRINT	ТОСТ		
0 <u>32</u> ⁸ –		Load	Step	FX	FY	FZ			
Apply Close 🥦 💬 😐				(kN)	(KN)	(KN)			
		PO-X(all)	po_0025	-5201.432507	-1372.192286	-0.393131			
]∖Rea	ction(@	ilobal)	A Reaction(L	ocal) 🖌 Rea	action(Local=S	Surface Sprii	ng) /	

MIDAS

[midas Gen V890 R1] [Inelastic Time History Analysis] 선택한 요소에 대한 힌지 결과 및 최대/최소 결과 선택적 출력 지원

- 비탄성 시간이력해석(Inelastic Time History Analysis) 시 선택한 Element, General Link 의 힌지 결과만 출력
- 비탄성 시간이력해석의 스텝별 결과 출력 없이 최대/최소값만 출력

Properties > Inelastic Properties > Inel. Control Data > Select Inelastic Hinge Result Output(Element/General Link) Load > Dynamic Loads > Time History Analysis Data > Global Control

[midas Gen V890 R1] [Inelastic Time History Analysis] 선택한 요소에 대한 힌지 결과 및 최대/최소 결과 선택적 출력 지원(계속)

- 비탄성 시간이력해석(Inelastic Time History Analysis) 시 선택한 Element, General Link 의 힌지 결과만 출력
- 비탄성 시간이력해석의 스텝별 결과 출력 없이 최대/최소값만 출력

Properties > Inelastic Properties > Inel. Control Data > Select Inelastic Hinge Result Output(Element/General Link) Load > Dynamic Loads > Time History Analysis Data > Global Control

■ Global Control 설정

Inelastic Hinge Status Result

[midas Gen V890 R1] [Inelastic Time History Analysis] Solver 성능 향상(해석시간 단축)

- 비탄성 시간이력해석 프로그램 최적화 및 비탄성 해석결과 출력 알고리즘 개선으로 해석 시간 단축
- Fiber Model 의 경우 약 1/20, Skeleton Model의 경우 약 1/2 로 해석 시간 단축

midas Gen Enhancement

[midas Gen V890 R1] [Inelastic Time History Analysis] Fiber Beam, Wall 비탄성 힌지 결과 Summary Table 추가

- Fiber Beam, Wall의 비탄성 시간이력해석 힌지 결과를 Summary Table 형태로 출력
- RC, Steel 재질 Fiber 단면의 최대/최소 Strain 결과 출력

Results > Results Tables > Inelastic Hinge > Fiber Beam Summary, Fiber Wall Summary

• Fiber Beam Summary

Element	Section	Matar	ial	Load		Coll		Minir	num			М	aximum	
Element	Position	Mater	a	Load		Cell	٤		Ti	me/Step	ŧ		Time/Ste	ep
						Ma	aximum and Minimu	im Strains at	Each Sectior	1				
					Co	ncrete					Ste	eel		
Element	Section	Load		Minimum		Maximum				Minimum			Maximum	
			Cell	3	Time/Step	ep Cell ε Tim			Cell	3	Time/Step	Cell	3	Time/Step
1	1-pos	DYNA	212	-1.31090e-003	3.080	3.080 2 4.51657e-003			234	-1.13533e-003	3.080	226	4.34048e-003	3.090
1	2-pos	DYNA	212	-3.65713e-004	2.990	212	6.49857e-004	6.050	234	-3.42752e-004	2.990	234	6.24902e-004	6.050
1	3-pos	DYNA	2	-2.26298e-004	3.100	212	3.83368e-004	2.660	229	-2.16190e-004	3.100	234	3.66219e-004	2.660
2	1-pos	DYNA	212	-4.33781e-004	2.080	212	1.16795e-003	5.950	234	-3.94597e-004	2.080	234	1.12444e-003	5.950
2	2-pos	DYNA	212	-1.60712e-004	2.180	212	4.11072e-004	4.560	234	-1.52268e-004	2.180	234	3.95087e-004	4.560
2	3-pos	DYNA	2	-3.94532e-004	3.060	212	7.49057e-004	3.060	226	-3.59973e-004	3.060	234	7.14507e-004	3.070
3	1-pos	DYNA	224	-2.35641e-004	2.890	212	9.42264e-004	5.950	235	-2.18520e-004	2.890	234	9.07028e-004	5.950
3	2-pos	DYNA	2	-1.55364e-004	3.060	212	2.61186e-004	2.360	226	-1.46279e-004	3.060	234	2.51061e-004	2.360
3	3-pos	DYNA	2	-4.04808e-004	3.020	212	1.01659e-003	3.030	226	-3.62026e-004	3.020	234	9.73654e-004	3.030
\Fiber E	Beam Su	mmary /						<						

Fiber Wall Summary

Stopy	Wall ID	Section	Mater	rial	beal		Cell		Minir	mum			М	aximum	
Story	Wall ID	Position	mater	Iai	Luau		Cell	٤		Ti	me/Step		E	Time/Ste	ер
							Maximur	n and Minimum Stra	ains at Each !	Section					
						Co	ncrete					Ste	eel		
Story	Wall ID	Section	Load		Minimum			Maximum			Minimum			Maximum	
				Cell	3	Time/Step	Cell	3	Time/Step	Cell	ε	Time/Step	Cell	3	Time/Step
1F	1	1-pos	DYNA	1	-9.39160e-004	2.680	15	2.81189e-001	2.680	17	-7.11083e-004	2.360	24	2.80383e-001	2.680
1F	1	2-pos	DYNA	1	-8.67644e-004	2.680	15	1.67658e-001	2.680	17	-7.19437e-004	2.450	24	1.67176e-001	2.680
1F	1	3-pos	DYNA	1	-6.64995e-004	2.680	15	6.16266e-003	2.680	17	-6.45485e-004	2.680	24	6.14315e-003	2.680
1F	1	4-pos	DYNA	1	-4.82424e-004	2.680	15	2.32626e-003	2.680	17	-4.74398e-004	2.680	24	2.31824e-003	2.680
1F	1	5-pos	DYNA	1	-4.11744e-004	2.680	15	1.77338e-003	2.680	17	-4.05500e-004	2.680	24	1.76714e-003	2.680
2F	1	1-pos	DYNA	1	-4.08757e-004	2.680	15	1.77946e-003	2.660	17	-4.02511e-004	2.680	24	1.77321e-003	2.660
2F	1	2-pos	DYNA	1	-3.63986e-004	2.680	15	1.50301e-003	2.660	17	-3.58657e-004	2.680	24	1.49767e-003	2.660
2F	1	3-pos	DYNA	1	-2.97825e-004	2.680	15	1.15894e-003	2.660	17	-2.93668e-004	2.680	24	1.15478e-003	2.660
2F	1	4-pos	DYNA	1	-2.47810e-004	2.680	15	9.54822e-004	2.660	17	-2.44377e-004	2.680	24	9.51387e-004	2.660
2F	1	5-pos	DYNA	1	-2.21425e-004	2.680	15	8.47144e-004	2.660	17	-2.18374e-004	2.680	24	8.44092e-004	2.660
3F	1	1-pos	DYNA	1	-2.19067e-004	2.680	15	8.53079e-004	2.670	17	-2.16011e-004	2.680	24	8.50018e-004	2.670
3F	1	2-pos	DYNA	1	-1.99154e-004	2.680	15	7.72331e-004	2.670	17	-1.96387e-004	2.680	24	7.69557e-004	2.670
3F	1	3-pos	DYNA	1	-1.62067e-004	2.690	15	6.20154e-004	2.690	17	-1.59832e-004	2.690	24	6.17919e-004	2.690
\Fiber V	Vall Sur	nmary /							<						

[midas Gen V890 R1] [KDS 41] 하중조합 지원

- [KDS 41 10 15] 기준에 따른 하중조합 자동생성
- Steel(KDS 41 31 : 2019), RC(KDS 41 30 : 2018), SRC(KDS 41 : 2019), Footing(KDS 41 30 : 2018) 하중조합 지원

Results > Load Combination

Automatic Generation of Load Combinations

Automatic Generation of Load Combinations							
Option Add Replace Add Envelope Code Option							
Steel Concrete SRC Cold Formed Steel Aluminum							
Design Code : 🛛 KDS 41 31 : 2019 🗸 🗸							
Scale Up of Response Spectrum Load Case Scale Up Factor : 1 RX -							
Factor Load Case 1,000 RX 1,050 RY Delete							
Wind Load Combinations Set Load Cases for Wind Direction							
Manipulation of Construction Stage Load Case ST : Static Load Case CS : Construction Stage Load Case ST Only CS Only ST+CS							
Consider Orthogonal Effect							
Set Load Cases for Orthogonal Effect,							
● 100: 30 Rule SRSS(Square-Root-of-Sum-of-Squares)							
Generate Additional Load Combinations — for Special Seismic Load for Vertical Seismic Forces							
Factors for Seismic Design							
OK Cancel							

[midas Gen V890 R1] 원형강관/파이프 단면의 강도비 산정 방식 옵션 지원

- Solid Round, Pipe(2축대칭) 철골 단면 검토 시 조합력을 받는 부재에 대한 강도비 산정 옵션 지원 (KSSC, AISC, AIJ, TWN 기준)
- SRSS 조합 또는 선형 조합 중 선택하여 적용

Design > Steel Design > Design Code Design > Steel Design > Combined Ratio Calculation Method for Circular Section

Steel Design Code

Design+ V.450

midas Design+ | Enhancement

[midas Design+ V450 R1] [KDS 41] 기준 검토 지원

- [KDS 41] 기준에 따른 검토 지원
- RC(KDS 41 30 : 2018), Steel(KDS 41 31 : 2019), SRC(KDS 41 SRC : 2019), Reinforce(KDS 41 30 : 2018)

Option > Design Option							
RC	국가건설 KOREA CONSTRUCTION	기준센터 처미계약한 건설가운	27				
RC Steel SRC Aluminum Cold Form	건설기준코또	E.				HOME > 건설기준코드	E > 건설기준코드 상세보기
	설계기준, 표준 <mark>시</mark> 빙	낭서 내용을 열람할 수 있습니다.					
Steel Design Option RC Steel SRC Aluminum Cold Form	검색어	검색	구분 시설물편▶	대분류 건축구조기준 💟 중분	류전체 🔽		
Design Code	설계기준	표준시방서 전문시방서	통합 다운로드				
Design Code KDS 41 31 : 2019 🔻	대분류	중분류	코드번호	코드명	개정이력	보기	다운로드 즐겨찾기
SRC	건축 구조기준	건축구조기준	KDS 41 00 00	건축구조기준	개정이력		*
Design Option	건축 구조기준	건축구조기준 일반사항	KDS 41 10 05	건축구조기준 총칙	개정이력	내용보기	<u>k</u>
RC Steel SRC Aluminum Cold Form	건축 구조기준	건축구조기준 일반사항	KDS 41 10 10	건축구조기준 구조검사 및 실험	개정이력	내용보기	<u>k</u>
Design Code KDS 41 SRC : 2019	건축 구조기준	건축구조기준 일반사항	KDS 41 10 15	건축구조기준 설계하중	개정이력	내용보기	<u>í</u> *
	건축 구조기준	건축물 내진설계기준	KDS 41 17 00	건축물 내진설계기준	개정이력	내용보기	🙍 \star
Reinforce	건축 구조기준	건축물 기초구조 설계기준	KDS 41 20 00	건축물 기초구조 설계기준	개정이력	내용보기	<u>∢</u> <u></u>
Design Option	건축 구조기준	건축물 콘크리트구조 설계기준	KDS 41 30 00	건축물 콘크리트구조 설계기준	개정이력	내용보기	<u>í</u> *
SRC Aluminum Cold Form Reinforce	건축 구조기준	건축물 강구조 설계기준	KDS 41 31 00	건축물 강구조 설계기준	개정이력	내용보기	<u>í</u> *
Design Code KDS 41 30 : 2018 💌	건축 구조기준	목구조 설계기준	KDS 41 33 01	목구조 일반사항	개정이력	내용보기	<u> </u>

[midas Design+ V450 R1] [KDS 41] 필로티 및 1층이 약층인 골조 내진 상세 검토 지원

- [KDS 41 17 00] 9.8.4 (6),(8) 필로티 내진 상세 및 9.8.5 (3) 1층이 약층인 경우 내진 상세 검토 지원(RC Column)
- 필로티 건축물 구조설계 가이드라인(국토교통부,2018) 검토 지원(RC Beam, Column, Shear Wall)

Depthmin Depth Depthmin / Depth 550mm 600mm 0.917 Widthmin Width Widthmin / Width 400mm 400mm 1.000

midas Design⁺ Enhancement

[midas Design+ V450 R1] [KDS 41] 필로티 및 1층이 약층인 골조 내진 상세 검토 지원(계속)

- [KDS 41 17 00] 9.8.4 (6),(8) 필로티 내진 상세 및 9.8.5 (3) 1층이 약층인 경우 내진 상세 검토 지원(RC Column)
- 필로티 건축물 구조설계 가이드라인(국토교통부,2018) 검토 지원(RC Beam, Column, Shear Wall)

RC > Column

▪ KDS 내진상세 및 필로티 가이드라인 검토 옵션

Apply Pilotis Provisions, KDS 41 17 00

🔽 Apply Pilotis Guideline, MOLIT

RC Column Detail Report

21. Check Rebar Limit by Pilotis Guideline, MOLIT

[Pilotis structures design guideline, See. 5.4.(1)]

- (1) Check amount of rebar ratio limit
 - Ratio = 0.0203
 - 0.0150 ≤ Ratio ≤ 0.0400 → O.K

(2) Check main rebar number limit

- Num_{min} = 8
- Num = 10
- Num_{min} = 8 ≤ Num = 10 → O.K

(3) Check main rebar diameter limit

- Dia_{min} = 19.10mm
- Dia = 25.40mm
- Dia_{min} = 19.10mm ≤ Dia = 25.40mm → O.K

(4) Check Tie bar space limit

[Pilotis structures design guideline, See. 5.4.(5)]

- Tie_{space,x} = 129mm
- Tie_{space,y} = 410mm
- Tie_{space} = max(Tie_{space,x}, Tie_{space,y}) = 410mm
- Tie_{space,limit} = 200mm
- Tie_{space} = 410mm > Tie_{space,limit} = 200mm → N.G

- KDS 옵션 적용 시, [KDS 41 17 00] 9.8.4 (6),(8) 및 9.8.5 (3)에 따라 전단 설계

■ 필로티 건축물 구조설계 가이드라인 (국토교통부,2018)

5.2. 부재설계
(1) 필로티기둥, 전이슬래브, 전이보, 연결부, 수직적으로 연속되지 않은 벽체는 특별지진하중을 만족하도록 건축구조기준에 따라서 설계한다.
(2) 필로티기둥 단면의 최소폭은 300mm 이상이어야 한다.
(3) 필로티 기둥의 설계전단력은 특별지진하중을 고려한 구조해석을 사용하여 계산하되 2M _n / L _n 이상이어야 한다. (M _n : 기둥의 해당방향 휨모멘트강도로서 압축력의 영향을 고려한 값, L _n :기둥의 순길이)
5.4. 필로티 기둥의 철근 표준상세
(1) 기둥 주철근비는 1.5% 이상 4% 이하이어야 하며, 주요 기둥에서는 8개 이상의 주철근을 배치

해야 하며, 주철근의 직경은 D19 이상이어야 한다.

RC Column Summary Report

13. Check Rebar Limit by Pilotis Guide	line, MOLIT	
Ratiomin	Ratio _{max}	Ratio
0.0150	0.0400	0.0203
Rebar _{Num,min}	Rebar _{Num}	Rebar _{Num,min} / Rebar _{Num}
8.000	10.00	0.800
Rebar _{Dia,min}	Rebarola	Rebar _{Dia,min} / Rebar _{Dia}
19.10mm	25.40mm	0.752
Tie _{space,limit}	Tie _{space}	Tie _{space} / Tie _{space,limit}
200mm	410mm	2.052

midas Design⁺ Enhancement

[midas Design+ V450 R1] [KDS 41] 필로티 및 1층이 약층인 골조 내진 상세 검토 지원(계속)

- [KDS 41 17 00] 9.8.4 (6),(8) 필로티 내진 상세 및 9.8.5 (3) 1층이 약층인 경우 내진 상세 검토 지원(RC Column)
- 필로티 건축물 구조설계 가이드라인(국토교통부,2018) 검토 지원(RC Beam, Column, Shear Wall)

Depthmin	Depth	Depthmin / Depth
200mm	200mm	1.000
Dia _{min}	Dia	Dia _{min} / Dia
12.70mm	12.70mm	1.000

[midas Design+ V450 R1] 원형강관/파이프 단면의 강도비 산정 방식 옵션 지원

- Solid Round, Pipe(2축대칭) 철골 단면 검토 시 조합력을 받는 부재에 대한 강도비 산정 옵션 지원 (KSSC, AISC 기준)
- SRSS 조합 또는 선형 조합 중 선택하여 적용

Steel > Beam/column

■ Steel Beam/Column 옵션 설정

- Solid Round, Pipe 형상 단면의 경우 강축과 약축 방향이 구분되어 있지 않으므로, 불리한 응력이 발생한 경우로 검토할 수 있도록 SRSS 조합한 식으로 강도비를 산정하고 있었습니다.

실무자가 판단하여 기준에 표현되어 있는 수식형태로 동일하게 선형조합해서 검토할 수 있도록 'Calculate by SRSS', 'Calculate by Code' 설정 옵션을 추가하였습니다.

Calulate by SRSS 설정 시 결과

4. Check interaction of combined strength

(1) Calculate interaction ratio of combined strength

P_r / P_c > 0.2 → Formula

• ComRat =
$$\frac{P_r}{P_o} + \frac{8}{9} \sqrt{(M_{rx} / M_{ox})^2 + (M_{ry} / M_{oy})^2} = 0.974 < 1.000 \rightarrow O.K$$

Calculate by Code 설정 시 결과

4. Check interaction of combined strength

(1) Calculate interaction ratio of combined strength

[midas Design+ V450 R1] 요약 결과 출력 및 Report 옵션 지원

- Project Mode 요약 결과 출력 지원 (RC Column/Shear Wall/Anchor Bolt, Steel Beam/Column)
- 결과 요약 표 및 그래프 출력에 대한 Report 옵션 지원 (RC Beam/Column/Shear Wall/Anchor Bolt, Steel Beam/Column)

Option > Report Option

■ Report Option 설정

Project Mode 요약 결과 출력

- Project Mode에서 검토 시 입력 데이터와 결과를 한 눈에 확인할 수 있도록 요약 결과(Calculation Summary) 를 출력합니다.

[midas Design+ V450 R1] 요약 결과 출력 및 Report 옵션 지원(계속)

- Project Mode 요약 결과 출력 지원 (RC Column/Shear Wall/Anchor Bolt, Steel Beam/Column)
- 결과 요약 표 및 그래프 출력에 대한 Report 옵션 지원 (RC Beam/Column/Shear Wall/Anchor Bolt, Steel Beam/Column)

Option > Report Option

■ Report Option 설정

Global Data Member Data Calcuation Result Summary ✓ Include Visual Items Include Visual Items in Printed Print Result Table Print Bar Cluster Simplified Column Header Detail Report Include Visual Items Include Visual Items in Printed Print Result Table Print Bar Cluster Simplified Column Header Summary Report 📝 Include Visual Items Include Visual Items in Printed Print Result Table Print Bar Cluster Simplified Column Header Apply Option by Member

표, 그래프(Visual Item) 출력 설정

■ Include Visual Items in Printed : Word 등으로 결과 출력 시 Visual Item 포함해서 출력

■ Print Result Table : 결과 요약 표 출력

Check Shear Capacity				
Calculation Summary (Check Shear Capacity)				
Category	Value	Criteria	Ratio	Note
Max. shear strength (kN)	100.00	490	0.204	
Max. shear strength (Special RC Wall) (kN)	100.00	629	0.159	
Check Shear Capacity (kN)	100.00	490	0.204	

■ Print Bar Cluster : 막대 그래프 형태 결과 출력

9. Check Shear Capacity																
Calculation Summary (Check Shear Capacity)															
Max. shear strength	i		0.20		i	-		-	-	-		ł	i	i	i	7
Max. shear strength (Special RC Wall)			0.16									[1	1	1	
Check Shear Capacity			0.20)												
	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50

■ Simplified Column Header : 표의 열 제목을 기호로 출력

9. Check Shear Capacity

Calculation Summary (Check Shear Capacity)

Category	Value	Criteria	Ratio	Note
V _u / øV _{n.max} (kN)	100.00	490	0.204	
Vu / øVn.max2 (kN)	100.00	629	0.159	
Vu /øVn (kN)	100.00	490	0.204	

[midas Design+ V450 R1] 요약 결과 출력 및 Report 옵션 지원(계속)

- Project Mode 요약 결과 출력 지원 (RC Column/Shear Wall/Anchor Bolt, Steel Beam/Column)
- 결과 요약 표 및 그래프 출력에 대한 Report 옵션 지원 (RC Beam/Column/Shear Wall/Anchor Bolt, Steel Beam/Column)

Option > Report Option Option > Initial Data Setting(Registry)

Member별 설	정		설정 저장	
Member별 설 Global Data Member Da RC Beam & Girder Column Shear Wall Anchor Bolt	ata	Calcuation Result Summary	설정 저장 Initial Data Setting (Registry) Common Report Data Base Design Code Report View Zoom Scale 100% Content Type Summary Report Include Visual Items Print Result Table Print Bar Cluster Simplified Column Header Detail Report Include Visual Items Include Visu	
	-	Summary Report Include Visual Items Include Visual Items in Printed Print Result Table Print Bar Cluster Simplified Column Header	 ✓ Print Bar Cluster Simplified Column Header Summary Report Include Visual Items ✓ Include Visual Items in Printed Print Result Table ✓ Print Bar Cluster ✓ Simplified Column Header 	

- Global Data 탭에서 'Apply Option by Member'에 체크 시 활성화
- 부재 타입별 Report 옵션 설정 지원

Design+ 실행 시 매번 Report Option 을 설정하는 번거로움 없이,
PC에 설정을 저장해놓고 사용할 수 있습니다.
* 기존과 동일한 포멧으로 결과 출력을 하고자 하는 경우에는
'Include Visual Items'에 체크를 해제하시면 됩니다.

midas **ADS**

Colonia -

전단벽식 아파트 구조해석 및 설계 시스템

It provides a revolutionary modeling feature, which utilizes AutoCAD DXF architectural drawings and Unit Block Method for repetitive building plans.

midas ADS is equipped with Super Element Analysis, Irregular Wall Design Feature and Auto-evaluation of Effective Stiffness with Iterative Method. Thus, it offers the optimized analysis and design system of shear wall type residential buildings.

Copyright (c) since 1989 MIDAS Information Technology Co., Ltd. All right reserved.

ADS V.265

midas ADS | Enhancement

[midas ADS V265 R1] [KDS 41] 하중조합 지원

- [KDS 41 10 15] 기준에 따른 하중조합 자동생성
- RC(KDS 41 30 : 2018) 하중조합 지원

Results > Load Combination

Automatic Generation of Load Combinations

Automatic Generation of Load Combinations
Option ● Add
Code Selection Steel ● RC ● SRC ● Footing Design Code : KDS 41 30 : 2018 →
Scale Up of Response Spectrum Load Cases
Auto Calculate Scale-up Factor
Wind Load Combinations
Set Load Cases for Wind Direction
Consider Orthogonal Effect Set Load Cases for Orthogonal Effect 10 100 : 30 Rule SRSS(Square Root of Sum of Square) Generate Additional Load Combinations
for Special Seismic Load
Factors for Seismic Design,
Consider Losses for Prestress Load Cases Transfer Stage : 0 Service Load Stage : 0 Define Factors
OK Cancel

Strength/Stress 조합 * KBC2016과 수식 동일
1.5.1 강도설계법 또는 한계상태설계법의 하중조합
(1) 강도설계법 또는 한계상태설계법으로 구조물을 설계하는 경우에는 다음의 하중조합으로 소요강도를 구하여야 한다.
1.4(D+F) (1.5-1)
$1.2(D+F+T)+1.6L+0.5(L_r \cong S \cong R)$ (1.5-2)
$1.2D + 1.6(L_r \text{ IEE } S \text{ IEE } R) + (1.0L \text{ IEE } 0.65 W)$ (1.5-3)
$1.2D + 1.3W + 1.0L + 0.5(L_r \cong S \cong R)$ (1.5-4)
1.2D + 1.0E + 1.0L + 0.2S (1.5-5)
0.9D + 1.3W (1.5-6)
0.9D + 1.0E (1.5-7)
Serviceability 조합 * KBC2016과 수식 동일
1.5.2 허용응력설계법의 하중조합
(1) 허용응력설계법으로 구조물을 설계하는 경우에는 다음의 하중조합으로 작용응력을 구하여야 한다.
D+F (1.5-8)
$D+F+L+T \tag{1.5-9}$
$D + F + (L_r \ \mathfrak{E} \models S \ \mathfrak{E} \models R)$ (1.5-10)
$D + F + 0.75(L + T) + 0.75(L_r \text{ IE} S \text{ IE} R)$ (1.5-11)
D+F+(0.85W 또는 0.7E) (1.5-12)
D+F+0.75(0.85W 또는 0.7E)+0.75L+0.75(Lr 또는 S 또는 R) (1.5-13)
0.6D + 0.85 W (1.5-14)
0.6D + 0.7E (1.5-15)

이외 주요 개선사항 및 버그수정사항은 아래와 같습니다. 고객 여러분의 관심과 프로그램 개선 참여에 깊은 감사 드립니다.

[midas Gen 2019 V890 R1]

- [Seismic Evaluation/KISTEC2013] (1단계상세평가) 층간변위 검토 시, RS Load Case를 선택한 경우 중요도 계수를 고려하지 않도록 수정
- [Seismic Evaluation/KISTEC2013] (1단계상세평가) 벽체 Bottom 결과 출력되도록 수정
- [Seismic Evaluation/KISTEC2013] (1단계상세평가) 철골부재 검토 시 Scale Up of m Factor를 고려하도록 수정
- [Seismic Evaluation/MOE2019] (선형해석평가) Evaluation Group을 설정하지 않아도 조적 면외 전도검토 결과 출력하도록 수정
- [Seismic Evaluation/MOE2019] (선형해석평가) X방향 지진하중 검토 시 Y방향 스트럿 결과가 출력되고, Y방향 지진하중 검토 시 X방향 스트럿 결과가 출력되도록 수정
- [Seismic Evaluation/MOE2019,MOE2018] (선형해석평가) 멤버로 지정한 RC 보 중력하중 검토 시 중앙부 모멘트 값 오류 수정
- Pushover Deformed Shape 결과에서 성능점 선택 시, Seismic Evaluation과 동일하게 성능점 직전 스텝의 결과를 출력하도록 수정

[midas Design+ V450 R1]

- KCI-USD12 기준 Anchor Bolt 검토 시, 인장이 발생하는 앵커 각각의 투영면적을 산정하여 검토하도록 개선
- RC General Column 검토 시, 방향별 Tie Bar를 고려하여 전단 강도를 산정하도록 수정
- KDS 41 30 2018 기준으로 RC Footing 2방향 전단 검토 시 fte 계수를 0.2로 적용

