0. Contents
1. Summary | 1-1 Structural Plans & Section |
---|---|
2. Structural Modeling |
2-1 Initial Window & Unit System Setting 2-2 Input Material Property & Section Data 2-3 Input the 2nd floor Elements 2-4 UCS & Line Grid Setting 2-5 Create Elements of the Skewed Part 2-6 Input the Beam End Release Conditions 2-7 Input Columns 2-8 Input the Diagonal Elements 2-9 Building Generation 2-10 Modify the upper part of the model 2-11 Input Story Data 2-12 Input the Cantilever Beams 2-13 Input the Boundary Conditions |
3. Input Loads |
3-1 Load Cases Setting 3-2 Input Self-weight 3-3 Input the Floor Loads 3-4 Input the Wind Loads 3-5 Input the Response Spectrum Analysis Conditions |
4. Perform the Structural Analysis/Window Setting |
4-1 Load Combination 4-2 Check the Deformed Shape 4-3 Check the Stresses |
5. Confirm the Analysis Results |
5-1 Examine Reactions 5-2 Examine the Eigenvalue Analysis Results |
6. Steel Member Design |
6-1 Create the Load Combinations 6-2 Input the Design Parameters 6-3 Steel Code Check 6-4 Re-analyze/Re-design reflecting the Design Results |
7. SRC Column Design |
7-1 Create the Load Combinations 7-2 Input the Design Parameters 7-3 SRC Code Check |
1. Summary
Steel Building
1-1 Structural Plans & Section
Structural Plan of the lower part (2~4F)
Structural Plan of the upper part (5~Roof)
The cross section (Section–②)
Applied Codes
• Applied Load / UBC(1997)
• Steel Design Code / AISC(14th)-LRFD10
• SRC Design Code / SSRC79
Used Materials
• Beam, Brace : A36
• Column: A572-50, Concrete Grade C4000
Applied Loads
• Gravity loads
• Wind loads
- Basic Wind Speed : 80 mph
- Exposure Category : C
- Importance Factor : 1.0
- Pressure Coefficient : 1.3
• Seismic loads
- Seismic Zone Factor : Z = 1 (0.075)
- Importance Factor : 1.0
- Soil Coefficient : Sc
- Height of the building : Hn = 64 m
- Width of the building : Bx = 70.58 m, By = 48.95 m
- Response Modification Coefficient
Rx : 4.2 (Steel with steel OMRF)
Ry : 4.2 (Steel with steel OMRF)
• Unit Load Cases
2. Structural Modeling
2-1 Initial Window & Unit System Setting
File > New Project
File > Save (Steel)
Tools > Setting > Unit System or Status Bar
Length > m ; Force > N
Point Grid (off),
Point Grid Snap (off),
Line Grid Snap (off)
Initial Window Setting
2-2 Input Material Property & Section Data
Property Number | Name | Type | Property Type |
---|---|---|---|
1 2 3 4 |
Girder Steel Column SRC Column Brace |
Steel Steel SRC Steel |
A36 A53 A53+Grade 3500 A36 |
Used material properties
Properties > Material > Material Properties
Name > Girder ; Type > Steel
Standard > ASTM(S) ; DB > A36
Name > Steel Column ; Type > Steel
Standard > ASTM(S) ; DB > A572-50
Name > SRC Column ; Type > SRC
Steel Standard > ASTM(S) ; DB > A572-50
Concrete Standard > ASTM(RC) ; DB > Grade C4000
Name > Brace ; Type > Steel
Standard > ASTM(S) ; DB > A36 .
Input material properties
Input the section data of the lower part girders
2-3 Input the 2nd floor Elements
Hidden (on),
Node Number (on),
Element Number (on)
Structure > Wizard > Base Structure > Frame
Input tab
X Coord. / Distance > 12 ; Repeat > 3
Z Coord./ Distance > 10.8 ; Repeat > 2
Z Coord./ Distance > 6 ; Repeat > 1
Z Coord./ Distance > 10.8 ; Repeat > 1
Edit tab
Beta Angle > 90 Deg.
Material > 1 ; Section > 221
Click .
Insert tab
Insert Point > 0, 0, 6
Rotations / Alpha > -90 .
Click .
Zoom Fit
Create the 2nd floor elements using Frame Wizard
Node/Element > Elements > Create Element
Material Name > 1:Girder
Section Name > 226:SG6
Nodal Connectivity > 2, 5
Material Name > 1:Girder
Section Name > 222:SG2
Nodal Connectivity > Element 33 (Refer to Figure below)
Material Name > 1:Girder
Section Name > 231:SB1
Nodal Connectivity > Element 36 (Refer to Figure below)
Modify the 2nd floor elements
Top View
Select Window (Node 1)
Select Element 1, 16
Click Delete key
Display > Node > Node Number (off)
Tree Menu > Works tab
Select Single (8, 11, 34, 35, 37, 38)
Display > Property > Property Name (on)
Properties > Section > 222:SG2 (Drag & Drop)
Similarly change properties of SG1 to SG3A, SG4 & SG5 by Drag & Drop
Change the section numbers using Drag & Drop
2-4 UCS & Line Grid Setting
Node Number (on)
Display > Property > Property Name (off)
X-Y
Coordinates Origin > 36, 10.8, 6 (Node 8)
Angle > -30
Define Line Grid
Grid Name > Skew Plane
X-Grid Lines
Line > 2@12 .
Y-Grid Lines
Levels > -10.8, 2@10.8, 6, 10.8
Add/Modify Grid Lines
Zoom Fit (on),
Line Grid Snap (on)
Define the grid lines
UCS & Line Grid setting
2-5 Create Elements of the Skewed Part
Node/Elements > Elements > Create Elements
Section Name > 221:SG1
Nodal Connectivity > Node 4 & corner of Line Grid
(Refer to ① of Figure below)
Create the Remainders (Refer to Figure below)
Input SG1 of the 2nd floor of the skewed part
Input the beam element of the 2nd floor of the skewed part
Select Single (unnecessary node & element; ① of Figure above)
Delete
Display
GCS (on),
Line Grid (off),
Line Grid Snap (off)
2-6 Input the Beam End Release Conditions
Display > Property > Property Name (on)
Select Single (SB1-element 36)
Boundary > Release/Offset >
Beam End Release (Refer to ① of Figure below)
Input the Beam End Release condition
The following column section data have been inputted in the file Steel(import).mgb
Column Section Data (1)
Column Section Data (2)
Typical method for inputting SRC sections :
Properties > Section > Section Properties
Add > SRC tab
Section ID > 101 ; Name > C1
Shape > Rect-IBeam
Concrete Data
HC > 0.7 ; BC > 0.7
Steel Data / DB > AISC
Steel Name > W 18×258
Material >
Concrete Material > DB > ASTM(RC)
Concrete Material / Name > Grade C4000
Steel Material > DB > ASTM(S)
Steel Material / Name > A572-50
Replace steel (on) ; Shear Deformation (on)
Input SRC Sections
Properties > Section > Section Properties >
(① of Figure below)
Application folder > Steel(import).mgb
Import the column section data >
(Refer to Figure below)
Section data before Import
Input the section data using import function
2-7 Input Columns
Redraw
Node Number (on)
Display > Property > Property Name (off)
Iso View,
Rotate Dynamic
Zoom Fit (Refer to Figure below)
Select All
Unselect Window (Node 23, 24)
Node/Element > Elements > Extrude Elements
Extrude Type > Node → Line Element
Reverse I-J (on) ; Element Type > Beam
Material > 3 : SRC Column ; Section > 101 : C1
Generation Type > Translate ; Translate > Equal Distance
Beta angle > 0 ; Number of Times > 1
dx, dy, dz > 0, 0, -6
Display > Element > Local Direction (on)
Display > Element > Local Direction (off)
Create the columns of the 1st floor
Select Recent Entities (Columns)
Node/Element > Elements > Change Element Parameters
Parameter Type > Element Local Axis
Mode > Assign > Beta Angle > 90
Select Previous
Unselect Polygon (Columns with Beta Angle = 90°)
Beta Angle > 60
Select Single (Refer to ① of Figure below)
Assign > Beta Angle > -30
Unselect Polygon
Status bar > Filter > z (Columns)
Select All
Unselect Polygon (Columns) (Refer to Figure below)
Tree Menu > Works tab
Properties > Material > 2 : Steel Column (Drag & Drop)
Select All,
Active,
Node Number (off)
Display > Property > Property Name (on)
Select Single (Elements 83, 84) (Refer to Figure below)
Properties > Section > 151 : C1A (Drag & Drop)
Modify the others in the same way
Active All
Modify beta angles and material properties
Modify the column number using Drag & Drop
2-8 Input the Diagonal Elements
Section list of the diagonal elements
Input the Brace section data
Shrink (off)
Zoom Window (core part)
Node Number (on) ,
Element Number (on)
Node/Element > Elements > Create Elements
Element Type > Truss
Material Name > 4 : Brace
Section Name > 1001 : BR1
Nodal Connectivity > X-directional Braces (Refer to Figure below)
Section No. > 2001:BR2
Nodal Connectivity > Y-directional Braces (Refer to Figure below)
Input the Braces
2-9 Building Generation
Auto Fitting (on)
Node Number (off),
Elements Number (off)
Status bar > Filter > none
Select All
Structure > Building > Control Data > Building Generation
Building Generation > Number of Copies > 2
Distance(Global Z) > 5 ; Operations >
Building Generation > Number of Copies > 6
Distance(Global Z) > 3.8 ; Operations >
Building Generation > Number of Copies > 6
Distance(Global Z) > 4.2 ; Operations >
Building Generation Table >
Insert the increment of the section numbers (Refer to Figure below)
Copy Element Attributes (on) >
Boundaries > Beam Release (on)
Building Generation Table
Select Plane
XY Plane > Z Position > 64
Active
Display > Boundary > Beam End release Symbol (on)
Display > Boundary > Beam End release Symbol (off)
Building Generation
2-10 Modify the upper part of the model
Sections of the upper part beams/girders
Active All,
Top View
Select Polygon + Ctrl key in Keyboard (Top View of Figure below)
Front View
Unselect Window (Front View of Figure below)
Iso View
Delete Key in Keyboard (Selected Nodes & Elements)
Top view
Front view
Select the non-existent elements
Select-Identity Element
Select Type > Section
List > 243 ,
Right View
Unselect Window (Refer to Figure below)
Iso View
Tree Menu > Works tab
Properties>Section > 523:SG3 (Drag & Drop)
Select-Identity Element
Select Type > Section
List > 224 : SG4 ,
Top View
Unselect Window (Refer to Figure below)
Tree Menu/ Works tab
Properties > Section > 525:SG5 (Drag & Drop)
Iso View
Right View
Iso View
Modify the model using Unselect Window and Works Tree
Modify the model using Unselect Window
Modify the upper part of the model
2-11 Input Story Data
Structure > Building > Control Data > Story
Story Data
2-12 Input the Cantilever Beams
Structure > UCS/Plan > Named Plane
Plane Name > B
Plane Type > X-Z Plane
Y Position > 10.8
Select All
Active Identity > Named Plane > B
,
Display > Node > Story Name (on)
Display > Boundary > Beam End release Symbol (on)
Activate the Named Plane
Node/Element > Elements > Extrude Elements
Extrude Type > Node → Line Element > Reverse I-J (on)
Element Type > Beam ; Material > 1:Girder
Section > 571:SCG1
Equal Distance > dx, dy, dz > 0, -1.2, 0
Number of Times > 1
Select Polygon (Nodes over the 5th Floor)
Node/Element > Elements > Create Elements
Extrude Type > General beam/Tapered beam
Material > 1:Girder ; Section No. > 532:SB2
Zoom Window (the grid of the 5th Floor)
Nodal Connectivity > 637
Zoom Fit
Zoom Window (the grid of the 5th Floor)
Zoom Window (off)
Nodal Connectivity > 637, 640
Input the Cantilever Beam
Zoom Fit
Select Recent Entities
Boundary > Release/Offset > Beam End Release
Select Previous
Node/Element > Elements > Translate Elements
Translation > Unequal Distance
Axis > Z
Distances > 5@3.8, 6@4.2
Copy Node Attributes (on)
Copy Element Attributes (on)
Copy the outer Cantilever Beam
2-13 Input the Boundary Conditions
Active All
Display > Node > Story Name (on)
Select Plane
XY Plane > Z Position > 0
Boundary > Supports > Define Supports
D-All (on) ; R-All (on)
Input the Support Condition of the structure
3. Input Loads
3-1 Load Cases Setting
Load > Static Load Cases
Input as Figure below
Static unit load case setting
3-2 Input Self-weight
Refer to other “Tutorials”.
3-3 Input the Floor Loads
Load > Static Loads > Initial Forces/Misc. > Assign Floor Loads
Load Type >
Define Floor Load Type (Refer to Figure below)
Refer to “Applied Loads” on page 5.
Define Floor Load Type
Active Identity
Story > 2F +Below (on)
,
Node Number (on)
Hidden (off)
Angle View
Horizontal > 50 ; Vertical > 60
Load > Static Loads > Initial Forces/Misc. > Assign Floor Loads
Load Type > Shop
Distribution Type > One Way ; Load Angle (A1) > 0
No. of Sub Beams > 3 ; Sub Beam Angle (A2) > 90
Unit Self Weight > 883 N/m ; Copy Floor Load (on)
Load Direction > Global Z ; Projection > Yes
Axis > Z ; Distances > 5
Nodes Defining Loading Area > 4,12, 9, 5, 2, 4
Input the Floor Loads
Nodes Defining Loading Area > 17, 13, 16, 20, 17
Nodes Defining Loading Area > 25, 28, 27, 8, 4, 25
Nodes Defining Loading Area > 30, 32, 31, 29, 30
Input the Floor Loads of the skewed part
Load Angle(A1) > 90
Sub-Beam Angle(A2) > 0
Nodes Defining Loading Area > 12, 27, 8, 12
Nodes Defining Loading Area > 20, 31, 29, 16, 20
Display > Load > Floor Load Name (on)
Confirm the inputted floor loads by Floor Load Name
No. of Sub Beams > 1
Nodes Defining Loading Area > 16, 29, 27, 12, 16
Nodes Defining Loading Area > 13, 14,10, 9, 13
Nodes Defining Loading Area > 15, 16, 12, 11, 15
Nodes Defining Loading Area > 29, 30, 28, 27, 29
No. of Sub Beams > 0
Nodes Defining Loading Area > 22, 21, 23, 24, 22
Active All
Confirm the inputted floor loads by Floor Load Name
Active Identity
Story > 4F +Below (on),
Display > Load > Floor Load Name (off)
Load Type > Office
Distribution Type > One Way
Load Angle (A1) > 90
No. of Sub Beams > 3
Sub-Beam Angle (A2) > 0
Unit Self Weight > 883 N/m
Copy Floor Load (on) ; Axis > z
Distances > 6@3.8, 5@4.2
Nodes Defining Loading Area > 124, 127, 123, 120, 124
Input the others in the same way (Refer to Figure below)
Node Number (off)
Active All,
Front View
Tree Menu > Works tab
Loading Plan of the upper part over the 4th floor
Confirm the inputted floor loads on the upper Office
Active Identity
Story > 4F +Below (on),
Angle View
Horizontal > 50 ; Vertical > 60
Zoom Fit
Load Type > roof ; Description > 4F roof
Copy Floor Load (off)
Nodes Defining Loading Area > Roof Loads
* Notice: Load Angle, Sub-Beam Angle, Number of Sub Beams
Input the 4th floor loads
Confirm the inputted loads by Works Tree
Active Identity
Story > 5F +Below (on),
Load Type > Office
Distribution Type > One Way
No. of Sub Beams > 0
Description > Delete
Copy Floor Load (on)
Z Axis Distances > 5@3.8, 5@4.2
Nodes Defining Loading Area > Cantilever
*Consider Load Angle (A1)
Active Identity
Story > 15F +Below (on)
Input the Floor Loads of the upper part cantilever
Active Identity
Story > Roof +Below (on),
Load Type > roof
No. of Sub Beams > 3
Copy Floor Load (off)
Nodes Defining Loading Area > Roof Floor
Cantilever portion :
No. of Sub Beams > 0
Active All
Assign Floor Loads >
Floor Load Table > (Refer to Figure below)
Input the floor loads of the roof
Floor Load Table
3-4 Input the Wind Loads
Structure > Building > Control Data > Story
Wind tab (① of Figure below)
Story Data
Load > Lateral Loads > Wind Loads
Load Case Name > WX Wind Load Code > UBC(1997)
Projected Area Method > (on) ;
Exposure Category > C ; Basic Wind Speed > 80
Importance Factor > 1 ; Pressure Coefficient > 1.3
Scale Factor in Global Y > 1 ; Scale Factor in Global Y > 0
Story Shear (GL) > 3241920.0 N
Load Case Name > WY Wind Load Code > UBC(1997)
Projected Area Method > (on) ;
Exposure Category > C ; Basic Wind Speed > 80
Importance Factor > 1 ; Pressure Coefficient > 1.3
Scale Factor in Global X > 0 ; Scale Factor in Global Y > 1
Story Shear (GL) > 4212477.0 N
Dialog box to input the wind load
Wind Load Profile
Wind loads calculation
3-5 Input the Response Spectrum Analysis Conditions
Structure > Type > Structure Type
Converting Type of Model weight to Masses > Convert to X, Y
Gravity Acceleration > 9.806
Align Top of Beam Section to Floor(X-Y Plane) for Panel
Zone Effect/Display (on)
Load > Structure Loads/Masses > Nodal Masses > Loads to Masses
Mass Direction > X, Y
Load Type for Converting > all (on)
Load Case > DL ; Scale Factor > 1
Query > Story Mass Table
Create the mass data automatically
Story Mass Table
Load > Seismic > Response Spectrum Data > Response Spectrum Load Case
Number of Frequencies > 15
Eigenvalue analysis conditions setting
Modal Combination Control >
Modal Combination Type > SRSS
Design Spectrum > UBC(1997)
Seismic Coefficients Calculation Option > Automatic (on)
Soil Profile Type (S) > Sc
Seismic Zone Factor (Z) > 1 (0.075)
Seismic Coefficient (Ca) > 0.09
Seismic Coefficient (Cv) > 0.13
Max. Period > 10 (sec)
Scale Factor (IE/R) > 0.238 (Refer to Figure below)
Assign the method of the mode combination
Dialog box to create the Design Spectrum automatically
Load > Seismic > Response Spectrum Data > Response Spectrum Load Case
Load Case Name > RX
Direction > X-Y
Excitation Angle > 0
Scale Factor > 1
Period Modification Factor > 1
Function Name > UBC1997 (on)
Operations >
Load Case Name > RY
Excitation Angle > 90
Operations >
Input the response spectrum load cases
4. Perform the Structural Analysis/Window Setting
Analysis > Perform Analysis
Toolbar setting to confirm the results
5. Confirm the Analysis Results
5-1 Examine Reactions
Tools > Setting > Unit System
Force > kN
Active Identity
Story > 2F ; +Below (on)
,
Results > Results > Reactions > Reaction Forces/Moments
Load Case/Combinations > ST : DL
Components > FZ
Type of Display > Values (on), Legend (on)
Values >
Decimal Points > 2
Results > Tables > Result Tables > Reaction
Load Combination > Self(ST) (on), DL(ST) (on), LL(ST) (on)
Confirm the reactions in the gravity direction
Reaction Table
5-2 Examine the Eigenvalue Analysis Results
Results > Tables > Result Tables > Vibration Mode Shape
Active Dialog >
Confirm the Eigenvalue analysis results
Model View tab
Iso View,
Active All,
Initial View
Results > Vibration Mode Shapes
Load Cases (Mode Numbers) > Mode 1
Components > Md-XYZ (on)
Type of Display > Mode Shape >
Mode Shape Scale Factor > 3.0
Animate (on) >
Animation Mode > Repeat Full Cycle
Record
Stop
Close
Vibration Mode Shapes
6. Steel Member Design
• Applied Design Code: AISC(14th)-LRFD10
6-1 Create the Load Combinations
All Windows except Model View >
Results > Combinations > Load Combination
Steel Design tab
Design Code > AISC(14th)-LRFD10
Scale Up Factor > 2.719, RX
Scale Up Factor > 2.504, RY
Input the Design Code & the Scale Up Factor
Create the load combinations
6-2 Input the Design Parameters
Design > General Design Parameter > Definition of Frame
X-Direction Frame > Braced I Non-sway
Y-Direction Frame > Braced I Non-sway
Design Type > 3-D (on)
Definition of Frame
Initial View
Select Identity-Element
Select Type > Section
List > 221 : SG1
List > 226 : SG6
List > 521 : 5SG1
Design > General Design Parameter > Unbraced Length (L, Lb)
Add > Replace > (on)
Laterally Unbraced Length Lb > 4
Input the remainders ; Refer to Table 1.5
Input lateral unbraced lengths
Laterally Unbraced Length of the girders
Design > Design > Steel Design > Design Code
Design Code > AISC(14th)-LRFD10
All Beams/Girders are Laterally Braced (on)
Select the design code
6-3 Steel Code Check
Redraw
Design > Design > Steel Design > Steel Code Check
Result View Option > NG
(Refer to Figure below)
Property No. > 224
Select (SEL) W 30×116 (Refer to Figure below)
Select (SEL) > Property No. > 224
(Refer to Figure below)
Automatic Design Result Dialog box
Summary of Design Results
Change Steel Properties Dialog box
Design > Section > Section for Design
1001 > W 30×132 ; 1002 > W 12×50 ; 2001 > W 14×90
Select Identity-Element > Select Type > Section
224(on), 1001(on), 1002(on), 2001(on)
Design > Design > Steel > Steel Code Check
Code Checking Result Dialog box after modifying the sections
Unselect All
Design > Design > Steel > Steel Code Check
Result View Option > All
Select (SEL) > 221
Ratio Limit > From > 0 ; To > 0.75
Modify section numbers using the design results
Model View tab
The right side of Select Identity-Element (Refer to ① of Figure below)
[Ctrl]+[C] in Keyboard (Copy Command)
Select elements to modify the sections
6-4 Re-analyze/Re-design reflecting the Design Results
Code Checking Result Dialog >
Select (SEL) > 224(on), 1001(on), 1002(on), 2001(on)
(Refer to Figure below)
“Analysis / design results will be deleted. Continue?”
The right side of Select Identity-Element (Refer to ① of Figure above)
[Ctrl]+[V] in Keyboard (Paste Command)
Model > Elements > Change Element Parameters
Parameter Type > Section ID
Assign No. > 522
Analysis > Perform Analysis OR Re-analysis (Refer to Figure below)
Update Changed Properties Dialog
Dialog box after updating the selected sections
Modify sections using the Change Element Parameter
Select Identity-Element
Select Type > Section
List > 224:SG4, 522:SG2, 1001:BR1, 1002:BR1, 2001:BR2
Design > Steel Code Check
(Refer to Figure below)
Select (SEL) > 224
(Refer to Figure below)
Confirm the results of the re-design
Stress ratio graph of 2∼4F SG1 (after modifying sections)
7. SRC Column Design
• Applied Design Code : SSRC79
7-1 Create the Load Combinations
Unselect All
Results > Combinations > Load Combination
SRC Design tab
Option > Add (on)
Design Code > SSRC79
Scale Up Factor > 2.719, RX
Scale Up Factor > 2.504, RY
Select the SRC Design Code
7-2 Input the Design Parameters
Design > Design > SRC Design > Design Code
Design Code > SSRC79
Tools > Setting > Unit System
Length > cm
Design > Design > SRC Design > Modify SRC Column Section Data
SEL > Section ID > 151 ~ 156
Reinforcing Main Bar > Auto Calculate Rebar Space (on)
Rebar > 12 - #8
Number of Rows > 4
Modify SRC Column Section Data
7-3 SRC Code Check
Design > Design > SRC Design > SRC Code Check > Column Checking
SRC Code Checking Result Dialog