Skip to main content
GEN Created Edited

[GEN] Steel Structure

0. Contents 

1. Summary 1-1 Structural Plans & Section
2. Structural Modeling

2-1 Initial Window & Unit System Setting

2-2 Input Material Property & Section Data

2-3 Input the 2nd floor Elements

2-4 UCS & Line Grid Setting

2-5 Create Elements of the Skewed Part

2-6 Input the Beam End Release Conditions

2-7 Input Columns

2-8 Input the Diagonal Elements

2-9 Building Generation

2-10 Modify the upper part of the model

2-11 Input Story Data

2-12 Input the Cantilever Beams

2-13 Input the Boundary Conditions

3. Input Loads

3-1 Load Cases Setting

3-2 Input Self-weight

3-3 Input the Floor Loads

3-4 Input the Wind Loads

3-5 Input the Response Spectrum Analysis Conditions

4. Perform the Structural Analysis/Window Setting

4-1 Load Combination

4-2 Check the Deformed Shape

4-3 Check the Stresses

5. Confirm the Analysis Results

5-1 Examine Reactions

5-2 Examine the Eigenvalue Analysis Results

6. Steel Member Design

6-1 Create the Load Combinations

6-2 Input the Design Parameters

6-3 Steel Code Check

6-4 Re-analyze/Re-design reflecting the Design Results

7. SRC Column Design

7-1 Create the Load Combinations

7-2 Input the Design Parameters

7-3 SRC Code Check


1. Summary

Steel Building

 

1-1 Structural Plans & Section

Structural Plan of the lower part (2~4F)

 

Structural Plan of the upper part (5~Roof)

 

The cross section (Section–②)

 

Applied Codes

• Applied Load / UBC(1997)

• Steel Design Code / AISC(14th)-LRFD10

• SRC Design Code / SSRC79

 

Used Materials

• Beam, Brace : A36

• Column:  A572-50, Concrete Grade C4000

 

Applied Loads

• Gravity loads

• Wind loads

- Basic Wind Speed : 80 mph

- Exposure Category : C

- Importance Factor : 1.0

- Pressure Coefficient : 1.3

• Seismic loads

- Seismic Zone Factor : Z = 1 (0.075)

- Importance Factor : 1.0

- Soil Coefficient : Sc

- Height of the building : Hn = 64 m

- Width of the building : Bx = 70.58 m, By = 48.95 m

- Response Modification Coefficient

Rx : 4.2 (Steel with steel OMRF)
Ry : 4.2 (Steel with steel OMRF)

• Unit Load Cases

 


2. Structural Modeling

2-1 Initial Window & Unit System Setting


File > New Project

File > Save (Steel)

Tools > Setting > Unit System or Status Bar

Length > m ; Force > N

Point Grid (off), Point Grid Snap (off), Line Grid Snap (off)


 

Initial Window Setting

 

2-2 Input Material Property & Section Data

Property Number Name Type Property Type

1

2

3

4

Girder

Steel Column

SRC Column

Brace

Steel

Steel

SRC

Steel

A36

A53

A53+Grade 3500

A36

Used material properties

 


Properties > Material > Material Properties

Name > Girder ; Type > Steel

Standard > ASTM(S) ; DB > A36

 

Name > Steel Column ; Type > Steel

Standard > ASTM(S) ; DB > A572-50

 

Name > SRC Column ; Type > SRC

Steel Standard > ASTM(S) ; DB > A572-50

Concrete Standard > ASTM(RC) ; DB > Grade C4000

 

Name > Brace ; Type > Steel

Standard > ASTM(S) ; DB > A36 .


 

Input material properties

 

Input the section data of the lower part girders

 

2-3 Input the 2nd floor Elements


Hidden (on), Node Number (on), Element Number (on)

Structure > Wizard > Base Structure > Frame

Input tab

X Coord. / Distance > 12 ; Repeat > 3

Z Coord./ Distance > 10.8 ; Repeat > 2

Z Coord./ Distance > 6 ; Repeat > 1

Z Coord./ Distance > 10.8 ; Repeat > 1

Edit tab

Beta Angle > 90 Deg.

Material > 1 ; Section > 221

Click .

Insert tab

Insert Point > 0, 0, 6

Rotations / Alpha > -90 .

Click .

 

 Zoom Fit


 

Create the 2nd floor elements using Frame Wizard

 


Node/Element > Elements > Create Element

Material Name > 1:Girder

Section Name > 226:SG6

Nodal Connectivity > 2, 5

 

Material Name > 1:Girder

Section Name > 222:SG2

Nodal Connectivity > Element 33 (Refer to Figure below)

 

Material Name > 1:Girder

Section Name > 231:SB1

Nodal Connectivity > Element 36 (Refer to Figure below)


 

Modify the 2nd floor elements

 

Top View

Select Window (Node 1)

Select Element 1, 16

Click Delete key


Display > Node > Node Number (off)

Tree Menu > Works tab

Select Single (8, 11, 34, 35, 37, 38)

Display > Property > Property Name (on)

Properties > Section > 222:SG2 (Drag & Drop)

Similarly change properties of SG1 to SG3A, SG4 & SG5 by Drag & Drop


 

Change the section numbers using Drag & Drop

 

2-4 UCS & Line Grid Setting


Node Number (on)

Display > Property > Property Name (off)

X-Y

Coordinates Origin > 36, 10.8, 6 (Node 8)
Angle > -30

 

Define Line Grid

Grid Name > Skew Plane

X-Grid Lines

Line > 2@12 .

Y-Grid Lines

Levels > -10.8, 2@10.8, 6, 10.8

Add/Modify Grid Lines

 

Zoom Fit (on), Line Grid Snap (on)


 

Define the grid lines

UCS & Line Grid setting

 

2-5 Create Elements of the Skewed Part


Node/Elements > Elements > Create Elements

Section Name > 221:SG1

Nodal Connectivity > Node 4 & corner of Line Grid

(Refer to ① of Figure below)

Create the Remainders (Refer to Figure below)


 

Input SG1 of the 2nd floor of the skewed part

Input the beam element of the 2nd floor of the skewed part

 


Select Single (unnecessary node & element; ① of Figure above)

Delete

Display

GCS (on), Line Grid (off), Line Grid Snap (off)


 

 

2-6 Input the Beam End Release Conditions


Display > Property > Property Name (on)

Select Single (SB1-element 36)

Boundary > Release/Offset >

Beam End Release (Refer to ① of Figure below)


 

Input the Beam End Release condition

 

The following column section data have been inputted in the file Steel(import).mgb

Column Section Data (1)

 

Column Section Data (2)

 


Typical method for inputting SRC sections :

Properties > Section > Section Properties

Add > SRC tab

Section ID > 101 ; Name > C1

Shape > Rect-IBeam

Concrete Data

HC > 0.7 ; BC > 0.7

Steel Data / DB > AISC

Steel Name > W 18×258

Material >

Concrete Material > DB > ASTM(RC)

Concrete Material / Name > Grade C4000

Steel Material > DB > ASTM(S)

Steel Material / Name > A572-50

Replace steel (on) ; Shear Deformation (on)


 

Input SRC Sections

 


Properties > Section > Section Properties > (① of Figure below)

Application folder > Steel(import).mgb

Import the column section data >

 

(Refer to Figure below)


 

Section data before Import

 

Input the section data using import function

 

2-7 Input Columns


Redraw

Node Number (on)

Display > Property > Property Name (off)

Iso View, Rotate Dynamic Zoom Fit (Refer to Figure below)

 

Select All

Unselect Window (Node 23, 24)

 

Node/Element > Elements > Extrude Elements

Extrude Type > Node → Line Element

Reverse I-J (on) ; Element Type > Beam

Material > 3 : SRC Column ; Section > 101 : C1

Generation Type > Translate ; Translate > Equal Distance

Beta angle > 0 ; Number of Times > 1

dx, dy, dz > 0, 0, -6

 

Display > Element > Local Direction (on)

Display > Element > Local Direction (off)


 

Create the columns of the 1st floor

 


Select Recent Entities (Columns)

Node/Element > Elements > Change Element Parameters

Parameter Type > Element Local Axis

Mode > Assign > Beta Angle > 90

Select Previous

Unselect Polygon (Columns with Beta Angle = 90°)

Beta Angle > 60

Select Single (Refer to ① of Figure below)

Assign > Beta Angle > -30


 

Unselect Polygon

 


Status bar > Filter > z (Columns)

Select All

Unselect Polygon (Columns) (Refer to Figure below)

 

Tree Menu > Works tab

Properties > Material > 2 : Steel Column (Drag & Drop)

 

Select All, Active, Node Number (off)

Display > Property > Property Name (on)

Select Single (Elements 83, 84) (Refer to Figure below)

 

Properties > Section > 151 : C1A (Drag & Drop)

Modify the others in the same way

 

Active All


 

Modify beta angles and material properties

Modify the column number using Drag & Drop

 

2-8 Input the Diagonal Elements

Section list of the diagonal elements

 

Input the Brace section data

 


Shrink (off)

Zoom Window (core part)

Node Number (on) , Element Number (on)

Node/Element > Elements > Create Elements

Element Type > Truss

Material Name > 4 : Brace

Section Name > 1001 : BR1

Nodal Connectivity > X-directional Braces (Refer to Figure below)

Section No. > 2001:BR2

Nodal Connectivity > Y-directional Braces (Refer to Figure below)


 

Input the Braces

 

2-9 Building Generation


Auto Fitting (on)

Node Number (off), Elements Number (off)

Status bar > Filter > none

Select All

 

Structure > Building > Control Data > Building Generation

Building Generation > Number of Copies > 2

Distance(Global Z) > 5 ; Operations >

Building Generation > Number of Copies > 6

Distance(Global Z) > 3.8 ; Operations >

Building Generation > Number of Copies > 6

Distance(Global Z) > 4.2 ; Operations >

Building Generation Table >

Insert the increment of the section numbers (Refer to Figure below)

Copy Element Attributes (on) >

Boundaries > Beam Release (on)    


 

Building Generation Table

 


Select Plane

XY Plane > Z Position > 64   

 

Active

Display > Boundary > Beam End release Symbol (on)

Display > Boundary > Beam End release Symbol (off)


 

Building Generation

 

2-10 Modify the upper part of the model

Sections of the upper part beams/girders

 


Active All, Top View

Select Polygon + Ctrl key in Keyboard (Top View of Figure below)

Front View

Unselect Window (Front View of Figure below)

Iso View

Delete Key in Keyboard (Selected Nodes & Elements)


 

Top view

Front view

Select the non-existent elements

 


Select-Identity Element

Select Type > Section

List > 243 ,

Right View

Unselect Window (Refer to Figure below)

Iso View

Tree Menu > Works tab

Properties>Section > 523:SG3 (Drag & Drop)

Select-Identity Element

Select Type > Section

List > 224 : SG4 ,

Top View

Unselect Window (Refer to Figure below)

 

Tree Menu/ Works tab

Properties > Section > 525:SG5 (Drag & Drop)

 

Iso View


 

Right View

Iso View

Modify the model using Unselect Window and Works Tree

 

Modify the model using Unselect Window

Modify the upper part of the model

 

2-11 Input Story Data


Structure > Building > Control Data > Story


 

Story Data

 

2-12 Input the Cantilever Beams


Structure > UCS/Plan > Named Plane

Plane Name > B

Plane Type > X-Z Plane

Y Position > 10.8

 

Select All

Active Identity > Named Plane > B

 

 Display > Node > Story Name (on)
Display > Boundary > Beam End release Symbol (on) 


Activate the Named Plane

 


Node/Element > Elements > Extrude Elements

Extrude Type > Node → Line Element > Reverse I-J (on)

Element Type > Beam ; Material > 1:Girder

Section > 571:SCG1

Equal Distance > dx, dy, dz > 0, -1.2, 0

Number of Times > 1

Select Polygon (Nodes over the 5th Floor)

 

Node/Element > Elements >  Create Elements

Extrude Type > General beam/Tapered beam

Material > 1:Girder ; Section No. > 532:SB2

Zoom Window (the grid of the 5th Floor)

Nodal Connectivity > 637

Zoom Fit

Zoom Window (the grid of the 5th Floor)

Zoom Window (off)

Nodal Connectivity > 637, 640


 

Input the Cantilever Beam

 


Zoom Fit

Select Recent Entities

Boundary > Release/Offset > Beam End Release

 

Select Previous

Node/Element > Elements > Translate Elements

Translation > Unequal Distance

Axis > Z

Distances > 5@3.8, 6@4.2

Copy Node Attributes (on)

Copy Element Attributes (on)


 

Copy the outer Cantilever Beam

 

2-13 Input the Boundary Conditions


 Active All

Display > Node > Story Name (on)

Select Plane

XY Plane > Z Position > 0

 

Boundary > Supports > Define Supports

D-All (on) ; R-All (on)


 

Input the Support Condition of the structure

 


3. Input Loads

3-1 Load Cases Setting


Load > Static Load Cases

Input as Figure below


 

Static unit load case setting

 

3-2 Input Self-weight

Refer to other “Tutorials”.

 

3-3 Input the Floor Loads


Load > Static Loads > Initial Forces/Misc. > Assign Floor Loads

Load Type >

Define Floor Load Type (Refer to Figure below)

Refer to “Applied Loads” on page 5.


 

Define Floor Load Type

 


Active Identity

Story > 2F +Below (on)

,

Node Number (on)

Hidden (off)

Angle View

Horizontal > 50 ; Vertical > 60

 

Load > Static Loads > Initial Forces/Misc. > Assign Floor Loads

Load Type > Shop

Distribution Type > One Way ; Load Angle (A1) > 0

No. of Sub Beams > 3 ; Sub Beam Angle (A2) > 90

Unit Self Weight > 883 N/m ; Copy Floor Load (on)

Load Direction > Global Z ; Projection > Yes

Axis > Z ; Distances > 5

Nodes Defining Loading Area > 4,12, 9, 5, 2, 4


 

Input the Floor Loads

 


Nodes Defining Loading Area > 17, 13, 16, 20, 17

Nodes Defining Loading Area > 25, 28, 27, 8, 4, 25

Nodes Defining Loading Area > 30, 32, 31, 29, 30


 

Input the Floor Loads of the skewed part

 


Load Angle(A1) > 90

Sub-Beam Angle(A2) > 0

Nodes Defining Loading Area > 12, 27, 8, 12

Nodes Defining Loading Area > 20, 31, 29, 16, 20

Display > Load > Floor Load Name (on)


 

Confirm the inputted floor loads by Floor Load Name

 


No. of Sub Beams > 1

Nodes Defining Loading Area > 16, 29, 27, 12, 16

Nodes Defining Loading Area > 13, 14,10, 9, 13

Nodes Defining Loading Area > 15, 16, 12, 11, 15

Nodes Defining Loading Area > 29, 30, 28, 27, 29

No. of Sub Beams > 0

Nodes Defining Loading Area > 22, 21, 23, 24, 22

Active All


 

Confirm the inputted floor loads by Floor Load Name

 


Active Identity

Story > 4F +Below (on)
,

Display > Load > Floor Load Name (off)

Load Type > Office

Distribution Type > One Way

Load Angle (A1) > 90

No. of Sub Beams > 3

Sub-Beam Angle (A2) > 0

Unit Self Weight > 883 N/m

Copy Floor Load (on) ; Axis > z

Distances > 6@3.8, 5@4.2

Nodes Defining Loading Area > 124, 127, 123, 120, 124

Input the others in the same way (Refer to Figure below)

Node Number (off)

Active All, Front View

Tree Menu > Works tab


 

Loading Plan of the upper part over the 4th floor

Confirm the inputted floor loads on the upper Office

 


Active Identity

Story > 4F +Below (on)
,

Angle View

Horizontal > 50 ; Vertical > 60

Zoom Fit

Load Type > roof ; Description > 4F roof

Copy Floor Load (off)

Nodes Defining Loading Area > Roof Loads

* Notice: Load Angle, Sub-Beam Angle, Number of Sub Beams


 

Input the 4th floor loads

Confirm the inputted loads by Works Tree

 


Active Identity

Story > 5F +Below (on)
,

 

Load Type > Office

Distribution Type > One Way

No. of Sub Beams > 0

Description > Delete

Copy Floor Load (on)

Z Axis Distances > 5@3.8, 5@4.2

Nodes Defining Loading Area > Cantilever

*Consider Load Angle (A1)

 

Active Identity

Story > 15F +Below (on)


 

Input the Floor Loads of the upper part cantilever

 


Active Identity

Story > Roof +Below (on)
,

 

Load Type > roof

No. of Sub Beams > 3

Copy Floor Load (off)

Nodes Defining Loading Area > Roof Floor

 

Cantilever portion :

No. of Sub Beams > 0

 

Active All

 

Assign Floor Loads >

Floor Load Table > (Refer to Figure below)


 

Input the floor loads of the roof

Floor Load Table

 

3-4 Input the Wind Loads


Structure > Building > Control Data > Story

Wind tab (① of Figure below)


 

Story Data

 


Load > Lateral Loads > Wind Loads

Load Case Name > WX    Wind Load Code > UBC(1997)

Projected Area Method > (on) ;

Exposure Category > C ; Basic Wind Speed > 80

Importance Factor > 1 ; Pressure Coefficient > 1.3

Scale Factor in Global Y > 1 ; Scale Factor in Global Y > 0

Story Shear (GL) > 3241920.0 N   

 

Load Case Name > WY    Wind Load Code > UBC(1997)

Projected Area Method > (on) ;

Exposure Category > C ; Basic Wind Speed > 80

Importance Factor > 1 ; Pressure Coefficient > 1.3

Scale Factor in Global X > 0 ; Scale Factor in Global Y > 1

Story Shear (GL) > 4212477.0 N


 

Dialog box to input the wind load

Wind Load Profile

Wind loads calculation

 

3-5 Input the Response Spectrum Analysis Conditions


Structure > Type > Structure Type

Converting Type of Model weight to Masses > Convert to X, Y

Gravity Acceleration > 9.806

Align Top of Beam Section to Floor(X-Y Plane) for Panel

Zone Effect/Display (on)

 

Load > Structure Loads/Masses > Nodal Masses > Loads to Masses

Mass Direction > X, Y

Load Type for Converting > all (on)

Load Case > DL ; Scale Factor > 1   

 

Query > Story Mass Table


 

Create the mass data automatically

Story Mass Table

 


Load > Seismic > Response Spectrum Data > Response Spectrum Load Case

Number of Frequencies > 15 


 

Eigenvalue analysis conditions setting

 


Modal Combination Control >

Modal Combination Type > SRSS

Design Spectrum > UBC(1997)

Seismic Coefficients Calculation Option > Automatic (on)

Soil Profile Type (S) > Sc

Seismic Zone Factor (Z) > 1 (0.075)

Seismic Coefficient (Ca) > 0.09

Seismic Coefficient (Cv) > 0.13

Max. Period > 10 (sec)

Scale Factor (IE/R) > 0.238 (Refer to Figure below)


 

Assign the method of the mode combination

Dialog box to create the Design Spectrum automatically

 


Load > Seismic > Response Spectrum Data > Response Spectrum Load Case

Load Case Name > RX

Direction > X-Y

Excitation Angle > 0

Scale Factor > 1

Period Modification Factor > 1

Function Name > UBC1997 (on)

Operations >

 

Load Case Name > RY

Excitation Angle > 90

Operations >


 

Input the response spectrum load cases

 


4. Perform the Structural Analysis/Window Setting


Analysis > Perform Analysis


 

Toolbar setting to confirm the results

 


5. Confirm the Analysis Results

5-1 Examine Reactions


Tools > Setting > Unit System

Force > kN

Active Identity

Story > 2F ; +Below (on)

,

 

Results > Results > Reactions > Reaction Forces/Moments

Load Case/Combinations > ST : DL

Components > FZ

Type of Display > Values (on), Legend (on)

Values >

Decimal Points > 2

 

Results > Tables > Result Tables > Reaction

Load Combination > Self(ST) (on), DL(ST) (on), LL(ST) (on)


 

Confirm the reactions in the gravity direction

Reaction Table

 

5-2 Examine the Eigenvalue Analysis Results


Results > Tables > Result Tables > Vibration Mode Shape

Active Dialog >


 

Confirm the Eigenvalue analysis results

 


Model View tab

Iso View, Active All, Initial View

 

Results > Vibration Mode Shapes

Load Cases (Mode Numbers) > Mode 1

Components > Md-XYZ (on)

Type of Display > Mode Shape >

Mode Shape Scale Factor > 3.0

Animate (on) >

Animation Mode > Repeat Full Cycle

 

Record

Stop

Close


 

Vibration Mode Shapes

 


6. Steel Member Design

• Applied Design Code: AISC(14th)-LRFD10

 

6-1 Create the Load Combinations


All Windows except Model View >

Results > Combinations > Load Combination

Steel Design tab

Design Code > AISC(14th)-LRFD10

Scale Up Factor > 2.719, RX

Scale Up Factor > 2.504, RY

 


 

Input the Design Code & the Scale Up Factor

Create the load combinations

 

6-2 Input the Design Parameters


Design > General Design Parameter > Definition of Frame

X-Direction Frame > Braced I Non-sway

Y-Direction Frame > Braced I Non-sway

Design Type > 3-D (on)    


 

Definition of Frame

 


Initial View

Select Identity-Element

Select Type > Section

List > 221 : SG1

List > 226 : SG6

List > 521 : 5SG1

 

Design > General Design Parameter > Unbraced Length (L, Lb)

Add > Replace > (on)

Laterally Unbraced Length Lb >

Input the remainders ; Refer to Table 1.5  


 

Input lateral unbraced lengths

Laterally Unbraced Length of the girders

 


Design > Design > Steel Design > Design Code

Design Code > AISC(14th)-LRFD10

All Beams/Girders are Laterally Braced (on) 


 

Select the design code

 

6-3 Steel Code Check


 Redraw

Design > Design > Steel Design > Steel Code Check

Result View Option > NG

(Refer to Figure below)

Property No. > 224

Select (SEL) W 30×116 (Refer to Figure below)

Select (SEL) > Property No. > 224

(Refer to Figure below)


 

Automatic Design Result Dialog box

Summary of Design Results

Change Steel Properties Dialog box

 


Design > Section > Section for Design

1001 > W 30×132 ; 1002 > W 12×50 ; 2001 > W 14×90 

Select Identity-Element > Select Type > Section

224(on), 1001(on), 1002(on), 2001(on)

Design > Design > Steel > Steel Code Check


 

Code Checking Result Dialog box after modifying the sections

 


Unselect All

Design > Design > Steel > Steel Code Check

Result View Option > All

Select (SEL) > 221

Ratio Limit > From > 0 ; To > 0.75


 

Modify section numbers using the design results

 


Model View tab

The right side of  Select Identity-Element (Refer to ① of Figure below)

[Ctrl]+[C] in Keyboard (Copy Command)


 

Select elements to modify the sections

 

6-4 Re-analyze/Re-design reflecting the Design Results


Code Checking Result Dialog >

Select (SEL) > 224(on), 1001(on), 1002(on), 2001(on)

(Refer to Figure below)

“Analysis / design results will be deleted. Continue?”

 

The right side of Select Identity-Element (Refer to ① of Figure above)

[Ctrl]+[V] in Keyboard (Paste Command)

 

Model > Elements > Change Element Parameters

Parameter Type > Section ID

Assign No. > 522

 

Analysis > Perform Analysis OR Re-analysis (Refer to Figure below)


 

Update Changed Properties Dialog

Dialog box after updating the selected sections

Modify sections using the Change Element Parameter

 


 Select Identity-Element

Select Type > Section

List > 224:SG4, 522:SG2, 1001:BR1, 1002:BR1, 2001:BR2

 

Design > Steel Code Check

(Refer to Figure below)

Select (SEL) > 224

(Refer to Figure below)


 

Confirm the results of the re-design

Stress ratio graph of 2∼4F SG1 (after modifying sections)

 


7. SRC Column Design

•  Applied Design Code : SSRC79

 

7-1 Create the Load Combinations


Unselect All

Results > Combinations > Load Combination

SRC Design tab

Option > Add (on)

Design Code > SSRC79

Scale Up Factor > 2.719, RX

Scale Up Factor > 2.504, RY

 


 

Select the SRC Design Code

 

7-2 Input the Design Parameters


Design > Design > SRC Design > Design Code

Design Code > SSRC79     

 

Tools > Setting > Unit System

Length > cm

 

Design > Design > SRC Design > Modify SRC Column Section Data

SEL > Section ID > 151 ~ 156

Reinforcing Main Bar > Auto Calculate Rebar Space (on)

Rebar > 12 - #8

Number of Rows > 4     


 

Modify SRC Column Section Data

 

7-3 SRC Code Check


Design > Design > SRC Design > SRC Code Check > Column Checking


 

SRC Code Checking Result Dialog

1
Was this article helpful?